AIP Publishing LLC
AIP Publishing LLC
  • Scitation
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • Conference Proceedings
    • Databases
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Diversity, Equity, and Inclusion
    • Careers
    • Events
    • Leadership
    • Contact
  • Scitation
  • AIP
  • AIP China
  • University Science Books

Simulation Illustrates How COVID-19 Social Distancing Creates Pedestrian ‘Traffic Jams’

  • October 19, 2021
  • News
Share:

Link to article: Social distancing slows down steady dynamics in pedestrian flows
DOI: 10.1063/5.0062331

WASHINGTON, October 19, 2021 — Along with the use of face masks, social distancing in public remains one of the most practiced front-line defenses against the spread of COVID-19. However, flows of pedestrians, including those practicing the 6-foot rule for distancing, are dynamic and characterized by nuances not always carefully considered in the context of everyday, public spaces.

Simulation of a pedestrian counterflow (red and blue particles, with green arrows denoting instantaneous velocity) confined within a hallway (gray boundary), under conditions of weak social distancing. CREDIT: Gerald J. Wang
Simulation of a pedestrian counterflow (red and blue particles, with green arrows denoting instantaneous velocity) confined within a hallway (gray boundary), under conditions of weak social distancing. CREDIT: Gerald J. Wang

In Physics of Fluids, by AIP Publishing, researchers from Carnegie Mellon University examine the dynamics of social distancing practices through the lens of particle-based flow simulations. The study models social distance as the distance at which particles, representing pedestrians, repel fellow particles.

“Even at modest pedestrian density levels, a strong preference for 6 feet of social distance can cause large-scale pedestrian ‘traffic jams’ that take a long time to clear up,” said Gerald J. Wang, of Carnegie Mellon University. “This is pretty evident to all of us who have engaged in that ‘awkward dance of social distance’ in a grocery store aisle during the past 18 months, but it has important implications for how we set occupancy thresholds as workplaces, campuses, and entertainment venues return to pre-pandemic densities.”

Motivated by the pandemic, the researchers shed light on the relationship between social distancing and pedestrian flow dynamics in corridors by illustrating how adherence to social distancing protocols affects two-way pedestrian movement in a shared space. The results add to a significant body of recent work around the effects of various factors on pedestrian counterflows and focuses on the characterization of jamming phenomena in relatively narrow corridors, a topic of current interest.

“Dense pedestrian flows plus social distancing recommendations is a recipe for a lot of frustration,” said Wang. “I mean this both in the physics sense of the word ‘frustration,’ with low particle mobilities because a bunch of ‘stuff’ is seemingly in their way, and in the everyday sense of the word ‘frustration,’ with people feeling flustered because, well, a bunch of ‘stuff’ is seemingly in their way!”

Wang noted public health messaging should be aligned with realistic, achievable behavior, adding that “strict adherence to social distancing — a la ‘the 6-foot rule’ — is simply not a practical recommendation in pedestrian flows at densities that are typical of large, shared venues.”

Though conceptually easy to digest, the findings underscore the complications of applying a “one-size-fits-all” policy recommendation to a public sphere characterized by nuanced pedestrian flow dynamics.

“Particle-based flow simulation, powered by high-performance computing, has enormous potential to rapidly explore a broad range of pedestrian flow problems, both during the pandemic and beyond,” said co-author Kelby B. Kramer.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Social distancing slows down steady dynamics in pedestrian flows

Authors

Kelby B. Kramer and Gerald J. Wang

Author Affiliations

Carnegie Mellon University

Share:
  • Attention-Based Deep Neural Network Increases Detection Capability in Sonar Systems
  • COVID-19 Vaccination Strategies: When Is One Dose Better Than Two?

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers
  • Events
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2023 AIP Publishing LLC