AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Using Holographic Endoscopes to Observe Distant Objects

  • March 30, 2021
  • APL Photonics
  • News
Share:

From the Journal: APL Photonics

WASHINGTON, March 30, 2021 — Scientists are developing tools to observe the biological machinery in in vivo animal models to be able to understand and better treat severe brain diseases like Alzheimer’s disease and many other conditions. Holographic endoscopes attracted researchers’ interest because of their potential to conduct minimally invasive observations inside the human body.

A sequence of holograms displayed by a digital micromirror device spatially shapes the wavefronts coupled into a multimode optical fiber in such a way that a far-field focus scans the distal field of view. CREDIT: Tomas Cizmar
A sequence of holograms displayed by a digital micromirror device spatially shapes the wavefronts coupled into a multimode optical fiber in such a way that a far-field focus scans the distal field of view. CREDIT: Tomas Cizmar

These tools can shed light on the biological processes occurring at the macromolecular and subcellular levels, which usually remain hidden from sight as most tissue is opaque to visible radiation. In APL Photonics, by AIP Publishing, researchers from the Leibniz Institute of Photonic Technology in Germany created a particularly narrow endoscope made of single hair-thin optical fibers that uses holographic methods to reconstruct images of macroscopic objects placed in front of the far end of the endoscope.

“We were positively surprised that the imaging quality was well-maintained at larger imaging distances, even for objects placed at a half meter from the endoscope,” said author Ivo Leite. “We expected that the low number of photons collected in this range would give rise to much higher detection noise.”

Efforts in imaging through multimode-fiber endoscopes previously focused on working distances typically smaller than 20 micrometers to resolve micrometer-scale details. This limits the field of view to the size of the fiber core.

The researchers brought the imaging operation to the observation of macroscopic objects, which can be placed far away from the endoscope. Researchers increased the imaging performance in terms of image definition to 100,000 pixels per image frame, an order of magnitude larger than previous holographic endoscopes and reaching the definition of modern video endoscopes.

Their efforts pave the way for bringing this class of minimally invasive endoscopes to clinical applications. The macroscopic imaging modality shown in this study will be essential to analyze biological samples at the tissue scale — just as conventional clinical endoscopes do — as well as to guide the instrument insertion.

Once a region of interest is identified, the hologram sequence displayed by the spatial light modulator can be updated to switch the imaging modality and perform observations at the cellular and subcellular levels.

“The potential for such flexibility in imaging operation through the same unmodified endoscope is a unique feature that, we believe, holographic endoscopes could soon offer,” said author Tomas Cizmar.

The researchers’ light control methods could be used to deliver practically any type of photonics tool through a hair-thin endoscope, which could have applications in a range of areas, such as optical transfection, subcellular laser surgery, and laser-assisted microfabrication.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Observing distant objects with a multimode fiber-based holographic endoscope

Authors

Ivo T. Leite, Sergey Turtaev, Dirk E. Boonzajer Flaes, and Tomas Cizmar

Author Affiliations

Leibniz Institute of Photonic Technology


APL Photonics

APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.

http://aip.scitation.org/journal/app

Share:
  • Microchip Models of Human Lungs Enable Better Understanding of Disease, Immune Response
  • Shining, Colored LED Lighting on Microalgae for Next-Generation Biofuel

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • CareersĀ 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏