AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Sequential Model Chips Away at Mysteries of Aircraft Ice

  • February 6, 2018
  • Physics of Fluids
  • News
Share:

By introducing a new parameter accounting for mixtures of ice, a team of researchers in the U.K. proposes a new model for how ice accumulates on aircraft wings.

From the Journal: Physics of Fluids

WASHINGTON, D.C., February 6, 2018 — Ice accumulation on aircraft wings is a common contributing factor to airplane accidents. Most existing models focus on either ice that freezes as a thin film on the airfoil, or immediately after it impacts the wing. Researchers have announced a new model, accounting for a combination of these forms, that they hope will melt our misunderstanding of ice accretion. 

A team at the University of Nottingham used a simulation that matches experimental and in situ observations to characterize ice on a spectrum between rime ice that forms from water vapor and glaze ice that forms from supercooled water droplets. Their work builds on existing models by introducing a new parameter that accounts for changes in adhesion characteristics. Their paper, published in Physics of Fluids, from AIP Publishing, provides a model for four stages of ice formation on aircraft wings. Notably, the authors expand the commercially available ICECREMO (ice accretion modelling) code to include a new definition of mixed ice. 

“Up until now, there has been a lack of work conducted on researching mixed ice,” said Zaid Ayaz Janjua, an author on the paper. “Our work will help inform research into thermally active nanocoatings for aircrafts to combat ice formation.” 

Most models consider two forms: glaze ice and rime ice. Glaze ice is smooth and is clear like glass, while rime ice is bumpy and opaque. 

“You can think of rime ice as the kind of ice you could easily scrape off from the walls of your freezer, whereas glaze ice is more like ice cube ice,” Janjua said. 

The group introduced a freezing fraction to describe the proportion of supercooled droplets that freeze on impact. The ice mixture has the adhesion characteristics of glaze ice when this fraction is zero. They verified the fraction with previous experimental data on how the height of accumulated ice affects rime ice accretion over time. 

Then, they modeled the stages of airfoil ice accretion. As rime ice covers the wing, less ice freezes on impact because rime ice is a poorer thermal conductor than aircraft materials. As a result, glaze ice forms an ice mixture on the wing. As this mixed ice gets thicker and the rate of conduction decreases, a water film begins to appear until the ice has taken on a predominantly glaze profile. 

“For a particular set of atmospheric conditions, you can have vastly different ice heights, which would greatly influence the amount of energy needed to remove the ice or even the tools you might select to achieve that,” Janjua said. 

Janjua said he hopes future work will look beyond ice height and investigate how ice accumulates two-dimensionally across an airfoil. Further work is required to relate the freezing fraction to other ice parameters, such as the packing fraction. Ice accretion affects a wide range of other engineering applications, including power cables, radio masts and wind turbines, which Janjua is looking to study next. 

###

For More Information:
Julia Majors
media@aip.org
301-209-3090
@AIPPhysicsNews

Article Title

Mixed ice accretion on aerofoils

Authors

Zaid Ayaz Janjua, Barbara Turnbull, Stephen Hibberd and Kwing-So Choi

Author Affiliations

University of Nottingham


Physics of Fluids

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids.

http://pof.aip.org

Share:
  • Diamonds Show Promise for Spintronic Devices
  • A New Radiation Detector Made from Graphene

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏