AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Progress Toward Antiviral Treatments for COVID-19

  • September 15, 2020
  • The Journal of Chemical Physics
  • News
Share:

From the Journal: The Journal of Chemical Physics

WASHINGTON, September 15, 2020 — COVID-19 is caused by a virus known as SARS-CoV-2, which is similar in structure to two other viruses that have caused recent outbreaks: SARS-CoV, which caused an outbreak of SARS in 2003, and MERS-CoV, the cause of a 2012 outbreak of Middle East Respiratory Syndrome.

Molecular structure of the papainlike enzyme known as PLPro. This enzyme allows the viruses that cause SARS, MERS, and COVID-19 to infect cells and replicate and suppress the host’s immune function. Now that the enzyme structure is known in detail, new antiviral drugs can be designed. CREDIT: Jack Henderson, University of Maryland School of Pharmacy
Molecular structure of the papainlike enzyme known as PLPro. This enzyme allows the viruses that cause SARS, MERS, and COVID-19 to infect cells and replicate and suppress the host’s immune function. Now that the enzyme structure is known in detail, new antiviral drugs can be designed. CREDIT: Jack Henderson, University of Maryland School of Pharmacy

In The Journal of Chemical Physics, by AIP Publishing, scientists from the University of Maryland School of Pharmacy report molecular-level investigations of these three viruses, providing a possible pathway to new antiviral drugs to fight all three diseases. At the present time, no effective treatment or drugs exist for any of these coronavirus diseases.

The investigators looked at a viral protein that plays a key role in the ability of the virus to replicate itself once inside the body. This protein also plays a role in defeating the host’s immune system, so it provides a particularly attractive target for potential drug treatments.

The protein, an enzyme known as the papainlike protease, PLPro, is nearly identical in SARS-CoV-2 and SARS-CoV but is slightly different in MERS-CoV. Very recently, the first structural X-ray of this enzyme revealed a shape in the catalytic domain somewhat like a hand with a “thumb,” “palm,” and “fingers.”

The thumb and palm come together to form a binding site, where a drug molecule could potentially be captured. The fingers fold down over this region and provide structural integrity that is essential for PLPro activity.

The investigators discovered small shifts in pH could change the shape of this enzyme through a process known as protonation, where hydrogen ions bind to certain amino acid units in the protein.

“Protonation state switch is an important energy transduction mechanism,” said author Jana Shen.

Co-author Jack Henderson said, “The coronavirus spike protein, for example, makes use of protonation state switches to induce large conformational changes required for membrane fusion.”

Membrane fusion is the first step in infection. A virus attaches to the outer membrane of a cell, making its way inside where it can begin to form copies of itself that spread throughout the body.

Another key feature of the PLpro binding site is a string of amino acid units called the BL2 loop. The investigators found this loop can open or close in SARS viruses when a particular amino acid on the loop is either protonated or deprotonated. In the MERS virus, however, the loop is flexible even without such an amino acid.

This feature suggests a potential drug could target the BL2 loop, causing it to close and tightly bind to a viral inhibitor.

“Our work provides a starting point for further mechanistic investigations using higher-level approaches,” said Shen.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Assessment of proton-coupled conformational dynamics of SARS and MERS coronavirus papain-like proteases: Implication for designing broad-spectrum antiviral inhibitors

Authors

Jack A. Henderson, Neha Verma, Robert C. Harris, Ruibin Liu and Jana Shen

Author Affiliations

University of Maryland


The Journal of Chemical Physics

The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics.

https://aip.scitation.org/journal/jcp

Share:
  • From Star to Solar System: How Protoplanetary Rings Form in Primordial Gas Clouds
  • Energy Harvesting Goes Organic, Gets More Flexible

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏