AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Plasma-Based Engineering Creates Contact-Killing, Antifouling, Drug-Release Surfaces

  • January 4, 2022
  • Journal of Applied Physics
  • News
Share:

From the Journal: Journal of Applied Physics

WASHINGTON, January 4, 2022 — The deepening concern over antibiotic-resistant infections, coupled with prevailing hospital-acquired infections from surgical tools, implants, and heavily touched surfaces, has ramped up antimicrobial material development in recent years.

Conventional wet-chemistry methods used to create biocidal materials are complex, time-consuming, and expensive. In the Journal of Applied Physics, by AIP Publishing, researchers from Belgium, Czech Republic, and Italy present a tutorial in which they explore a promising alternative called plasma-enabled surface engineering.

Plasma-etched nanostructured anti-bacterial surfaces. CREDIT: Copyright 2020 Elsevier.
Plasma-etched nanostructured anti-bacterial surfaces. CREDIT: Copyright 2020 Elsevier.

“Plasma-based engineering is an inexpensive and environmentally friendly method, because it doesn’t require the use of solvents and can be scaled up to industrial production relatively straightforwardly,” co-author Anton Nikiforov said.

The technology relies on nonequilibrium plasma, or partially ionized gas, that produces chemical reactions to change the properties at the material surface. The different temperature levels within the plasma — usually ionized noble gases, oxygen, or air — create distinct chemical pathways. Reactions can be manipulated by adjusting electric power for surface activation, coating deposition, and surface nanostructuring of virtually any solid material.

Plasma-enabled engineering can create contact-killing, antifouling, and drug-release surfaces. Contact-killing materials destroy microorganisms through the microscopic spikes that puncture microorganisms on contact. One study showed plasma-etched black silicon nanopillar structures are highly bactericidal against a variety of bacteria, including Staphylococcus aureus, an antibiotic-resistant bacterium well known for causing serious skin infection that can also infect the bloodstream, lungs, heart, and bones.

Antifouling materials prevent microorganisms from accumulating on surfaces to form biofilms and other dangerous microbial environments. Some of these materials are inspired by what nature has already invented, such as the antifouling properties of cicada and dragonfly wings, which are made up of nanopillars that kill microbes on contact and produce biochemicals to repel moisture.

Plasma polymerized superhydrophobic thin coatings — water-repelling materials inspired by the lotus leaf — have also been extensively developed and investigated for their antifouling properties. With the lack of moisture, microorganisms are prevented from adhering to and reproducing on these surfaces.

Drug-release surfaces control the release of antimicrobial compounds, enabling high-dose delivery of antibiotics to targeted locations, which is useful after surgery. For example, vancomycin, a common antibiotic, was deposited inside spherical particles. This was achieved in aerosol-assisted plasma deposition that combines high-energy plasma and drug aerosols.

Numerous plasma-based methods have been developed to create such surfaces, including low-pressure and atmospheric pressure plasma etching, plasma polymerization, sputtering, gas aggregation of nanoparticles, aerosol-assisted plasma deposition, and various combinations of the same methods.

Although plasma-based engineering is sure to accelerate, there are still challenges to overcome, including the need to better understand how bacteria stick to surfaces and what exactly is taking place as the microorganisms are destroyed.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Plasma technology in antimicrobial surface engineering

Authors

Anton Nikiforov, Chuanlong Ma, Andrei Choukourov, and Fabio Palumbo

Author Affiliations

Ghent University, Charles University, University of Bari


Journal of Applied Physics

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research.

http://jap.aip.org/

Share:
  • Sustainable Silk Material for Biomedical, Optical, Food Supply Applications
  • Editorial: Bionic Devices Offer Benefits, But Pose Health, Ethical Concerns

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏