AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

New Algorithm Finds the Optimal Bond Breaking Point for Single Molecules

  • August 1, 2017
  • The Journal of Chemical Physics
  • News
Share:

Researchers in Spain and Germany have created an algorithm to determine the stress-induced breakdown or forming of molecular bonds for chemical synthesis and catalysis 

From the Journal: The Journal of Chemical Physics

In this potential-surface picture, the red curve is a reaction pathway. The pink points are the optimal BBPs, and the black points are the minima and transition states. Green lines are the BBP points for all possible Newton trajectories. Credit: AIP Publishing

WASHINGTON, D.C., August 1, 2017 — Recent developments in atomic-force microscopy have enabled researchers to apply mechanical forces to individual molecules to induce chemical reactions.                                                   

A research team from Spain and Germany has now developed a first-of-its-kind algorithm that determines the minimal force it takes to reach the optimal bond breaking point (BBP) at the molecular level to mechanically induce a chemical reaction. They report their findings this week in The Journal of Chemical Physics, from AIP Publishing. 

The algorithm can be applied to any molecule, including biological molecules like proteins as well as inorganic molecules. Their research has implications for numerous applications, including molecular machines, mechanically resilient and self-healing polymers, stress-responsive materials and catalyst design. The algorithm can also be used to explore how external electric fields can catalyze and control chemical reactions. 

When studying mechano-chemical processes, researchers look for the mechanical response of the reactant molecule’s minimum-energy structure. As the external force increases, the minimum energy and transition state structures on the force-modified potential energy surface become identical and the structure where this occurs is the sought-after BBP. 

“Our work highlights that there exists another set of important points on the potential energy surface of a given system, namely the BBP, which needs to be taken into consideration for mechano-chemistry applications,” said Wolfgang Quapp, a co-author of the paper who added that BBP is a new concept in mechano-chemistry. 

The optimal BBPs of a potential energy surface are crucial, according to Quapp, because they provide information about the way in which tensile forces should be applied to trigger chemical transformations with the highest possible efficiency using the least amount of force. 

The bond, bending and torsion of a molecule have varying stiffness. Therefore, determining the force-bearing scaffold of a molecule, to predict, for example, the point of bond rupture in an overstretched molecule, means that different directions of the external force should be tested. 

“Our algorithm allows researchers to identify which part of a molecule is most susceptible to mechanical stress, and thus the algorithm is a significant step in the design of more efficient ways of harnessing mechanical energy to activate chemical reactions,” Quapp said. “The importance of the optimal BBP resides in that it gives the optimal direction and magnitude of the pulling force. This necessitates an algorithm to easily find these types of points.” 

The algorithm is based on Newton trajectories, which come from the mathematical method of calculating zeros of a function. In the case of BBPs, the Newton trajectories are located near the reaction path of the chemical reaction under consideration. 

Molecular configuration of the optimal BBP of the 1, 2-sigmatropic H-shift rearrangement of cyclopentadiene. The arrows correspond to the components of the gradient at this point. Credit: AIP Publishing

### 

For More Information:
Julia Majors
media@aip.org
301-209-3090
@AIPPhysicsNews

Article Title

An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and ...

Authors

Josep Maria Bofill, Jordi Ribas-Ariño, Sergio Pablo García and Wolfgang Quapp

Author Affiliations

University of Barcelona and the Institute of Mathematics at Leipzig University


The Journal of Chemical Physics

The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics.

https://aip.scitation.org/journal/jcp

Share:
  • Ferroelectric Phenomenon Proven Viable for Oxide Electrodes, Disproving Predictions
  • Vertical Axis Wind Turbines Can Offer Cheaper Electricity for Urban and Suburban Areas

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏