AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Controlling Cardiac Waves with Light to Better Understand Abnormally Rapid Heart Rhythms

  • December 22, 2020
  • Chaos
  • News
Share:

From the Journal: Chaos

WASHINGTON, December 22, 2020 — Over 300,000 people die each year in the U.S. due to sudden cardiac death. In many cases, sudden cardiac death is caused by abnormally rapid heart rhythms called tachycardias, which means the heart cannot pump adequate blood to the body.

Controllable reentry in a light-sensitive heart: (top left) Activation map during fixed delay pacing; (top right) Alternans (beat-to-beat changes) in voltage; (bottom) The same plot over a longer period shows self-terminating bursts. CREDIT: Gil Bub
Controllable reentry in a light-sensitive heart: (top left) Activation map during fixed delay pacing; (top right) Alternans (beat-to-beat changes) in voltage; (bottom) The same plot over a longer period shows self-terminating bursts. CREDIT: Gil Bub

In Chaos, by AIP Publishing, researchers use mice to study tachycardias and find there are intrinsic mechanisms that exist in heart tissue that they hypothesize lead to the self-termination of rapid cardiac rhythm.

“A tachycardia is a heartbeat continuously activating the heart, like a toy train endlessly going around a circular track,” said co-author Leon Glass.

The researchers modeled tachycardias in a mouse heart by detecting the wave in one part of the heart and stimulating another part at a fixed time later. They discovered that small changes in the delay lead to either endless circulation or self-termination of the cardiac waves.

During the circulation of the wave and before the termination, there was often an alternation of wave characteristics, such as one cycle proceeding faster and the next being slower. The researchers used optogenetics, a set of tools that allows them to stimulate and control cardiac waves with light, rather than by standard methods of electrical stimulation.

Alternating dynamics, called alternans, in the heart have been associated in the past with initiation of tachycardias. Consequently, efforts have been made to eliminate or reduce alternans.

“Paradoxically, we find that alternans can also facilitate self-termination of tachycardia and might be beneficial,” said co-author Gil Bub.

The optical, real-time feedback control system can be used for a wide variety of innovative experiments beyond this specific research.

“We could extend the work to study control of other geometries of abnormal cardiac wave propagation such as spiral waves. It can also be applied to the nervous system where there are abnormal bursting rhythms such as epilepsy,” said co-author Leonardo Sacconi.

The team plans to build on this research in several ways, including carrying out similar experiments in cardiac cell culture and investigating how drugs impact the stability of tachycardias, characterizing the molecular and ionic mechanisms facilitating self-termination of the tachycardia, and modifying the magnitude of the alternans to analyze its role in the self-termination of tachycardia.

###


Chaos

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.

http://chaos.aip.org

Share:
  • Masks Not Enough to Stop COVID-19’s Spread Without Distancing
  • Hand-Held Device Measures Aerosols for Coronavirus Risk Assessment

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏