AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Assessing State of the Art in AI for Brain Disease Treatment

  • October 14, 2020
  • APL Bioengineering
  • News
Share:

From the Journal: APL Bioengineering

WASHINGTON, October 14, 2020 — Artificial intelligence is lauded for its ability to solve problems humans cannot, thanks to novel computing architectures that process large amounts of complex data quickly. As a result, AI methods, such as machine learning, computer vision, and neural networks, are applied to some of the most difficult problems in science and society.

Loaded with the titles of all the papers in the study, a word cloud shows the prevalence of AI concepts in the sample, including machine learning techniques like convolutional neural networks (CNN), support vector machines (SVM), and image segmentation, a digital image processing technique used in computer vision. CREDIT: Image courtesy Alice Segato and Aldo Marzullo
Loaded with the titles of all the papers in the study, a word cloud shows the prevalence of AI concepts in the sample, including machine learning techniques like convolutional neural networks (CNN), support vector machines (SVM), and image segmentation, a digital image processing technique used in computer vision. CREDIT: Image courtesy Alice Segato and Aldo Marzullo

One tough problem is the diagnosis, surgical treatment, and monitoring of brain diseases. The range of AI technologies available for dealing with brain disease is growing fast, and exciting new methods are being applied to brain problems as computer scientists gain a deeper understanding of the capabilities of advanced algorithms.

In a paper published this week in APL Bioengineering, by AIP Publishing, Italian researchers conducted a systematic literature review to understand the state of the art in the use of AI for brain disease. Their search yielded 2,696 results, and they narrowed their focus to the top 154 most cited papers and took a closer look.

Their qualitative review sheds light on the most interesting corners of AI development. For example, a generative adversarial network was used to synthetically create an aged brain in order to see how disease advances over time.

“The use of artificial intelligence techniques is gradually bringing efficient theoretical solutions to a large number of real-world clinical problems related to the brain,” author Alice Segato said. “Especially in recent years, thanks to the accumulation of relevant data and the development of increasingly effective algorithms, it has been possible to significantly increase the understanding of complex brain mechanisms.”

The authors’ analysis covers eight paradigms of brain care, examining AI methods used to process information about structure and connectivity characteristics of the brain and in assessing surgical candidacy, identifying problem areas, predicting disease trajectory, and for intraoperative assistance. Image data used to study brain disease, including 3D data, such as magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, and computed tomography imaging, can be analyzed using computer vision AI techniques.

But the authors urge caution, noting the importance of “explainable algorithms” with paths to solutions that are clearly delineated, not a “black box” — the term for AI that reaches an accurate solution but relies on inner workings that are little understood or invisible.

“If humans are to accept algorithmic prescriptions or diagnosis, they need to trust them,” Segato said. “Researchers’ efforts are leading to the creation of increasingly sophisticated and interpretable algorithms, which could favor a more intensive use of ‘intelligent’ technologies in practical clinical contexts.”

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Artificial intelligence for brain diseases: A systematic review

Authors

Alice Segato, Aldo Marzullo, Francesco Calimeri, and Elena De Momi

Author Affiliations

Alice Segato, Aldo Marzullo, Francesco Calimeri, and Elena De Momi


APL Bioengineering

APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.

https://aip.scitation.org/journal/apb

Share:
  • Record High Values of Peak Power with Picosecond Generators
  • Keeping COVID-19 Out of Classrooms: Open Windows, Use Glass Screens In Front of Desks

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏