AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

A First Look at Interstitial Fluid Flow in the Brain

  • July 3, 2018
  • APL Bioengineering
  • News
Share:

A team of researchers have developed a new method to investigate the link between interstitial fluid flow and brain tumors.

From the Journal: APL Bioengineering

WASHINGTON, D.C., July 3, 2018 — Interstitial fluid transports nutrients and removes waste between the organs and tissues in our body. In the brain, interstitial fluid is thought to be composed of circulating cerebrospinal fluid, cellular waste and blood plasma, and past research has shown a link between interstitial fluid flow and an increased invasion rate of glioblastoma, or brain tumor, cells. A team of biomedical researchers and electrical engineers from the University of Virginia and Virginia Tech recently developed a new method to measure and reconstruct interstitial fluid flow velocities in the brain. 

This method gives researchers a first look at interstitial fluid flow dynamics in glioma models, and the technique can readily translate to clinical models already using contrast-enhanced magnetic resonance imaging (MRI). The team describes their method in a special issue focusing on the “Bioengineering of Cancer” in APL Bioengineering, by AIP Publishing. 

The team built on an existing dynamic contrast-enhanced MRI technique that’s already frequently used in clinics to track tumor growth and movement. “We are excited about our technique because we could potentially translate it to patient data that already exists and look at interstitial fluid motion in those patients,” said Jennifer Munson, a lead author on the paper. 

Munson touted the team’s rigorous validation approach in silico and in vitro. First, the team developed an in vitro model of interstitial fluid flow moving through extracellular space by placing fluid on top of a hydrogel and using MRI to measure how the fluid flowed from top to bottom. Then, they validated their computational model against their experimental measurements. 

MRI with contrast shows heterogenous interstitial fluid flow in glioblastoma. The tumor border is outlined in red. Credit: Kingsmore et al.

To further validate their technique, Daniel Abler and Russell Rockne, who are co-authors on the paper, created phantom fluid “flow field,” in a computer and then reconstructed that flow using their new imaging methodology. Finally, the team implanted patient-derived glioma cells in mice and examined the mouse tumors using MRI to visualize a real flow field. 

The team was surprised to find high variability in the flow’s rate and magnitude. “There’s been this classical idea that a tumor develops and there’s this equivalent flow rate going out in all directions like a sphere,” Munson said. “Our method and our visualization approach and modeling show that that’s a large oversimplification and we have a very heterogenous system. Sometimes flow is going out, or in, or along the side.” 

One day, this technique could potentially help researchers predict how a tumor might grow and, therefore, improve cancer treatments. More immediately, the team plans to use their established method “to understand the relationship between the fluid velocities and the growth of the tumors,” Munson said. 

###

For More Information:
Julia Majors
media@aip.org
301-209-3090
@AIPPhysicsNews

Article Title

MRI analysis to map interstitial flow in the brain tumor microenvironment

Authors

Kathryn M. Kingsmore, Andrea Vaccari, Daniel Abler, Sophia X. Cui, Frederick H. Epstein, Russell C. Rockne, Scott T. Acton and Jennifer M. Munson

Author Affiliations

University of Virginia and Virginia Polytechnic Institute and State University


APL Bioengineering

APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.

https://aip.scitation.org/journal/apb

Share:
  • Spraying Efficiently: Breaking Up Is Hard to Do
  • Underlying Mechanism Discovered for Magnetic Effect in Superconducting Spintronics

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏