AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Windows that act like an LCD Screen

  • April 23, 2015
  • AIP Advances
  • News
Share:

A newly developed light shutter may pave the way for see-through displays and smart windows

From the Journal: AIP Advances

WASHINGTON, DC, April 28, 2015 — The secret desire of urban daydreamers staring out their office windows at the sad brick walls of the building opposite them may soon be answered thanks to transparent light shutters developed by a group of researchers at Pusan National University in South Korea.

A novel liquid crystal technology allows displays to flip between transparent and opaque states — hypothetically letting you switch your view in less than a millisecond from urban decay to the Chesapeake Bay. Their work appears this week in the journal AIP Advances, from AIP Publishing.

The idea of transparent displays has been around for a few years, but actually creating them from conventional organic light-emitting diodes has proven difficult.

“The transparent part is continuously open to the background,” said Tae-Hoon Yoon, the group’s primary investigator. “As a result, they exhibit poor visibility.”

Light shutters, which use liquid crystals that can be switched between transparent and opaque states by scattering or absorbing the incident light, are one proposed solution to these obstacles, but they come with their own set of problems.

While they do increase the visibility of the displays, light shutters based on scattering can’t provide black color, and light shutters based on absorption can’t completely block the background. They aren’t particularly energy-efficient either, requiring a continuous flow of power in order to maintain their transparent ‘window’ state when not in use. As a final nail in the coffin, they suffer from a frustrating response time to power on and off.

Tae-Hoon Yoon’s group’s new design remedies all of these problems by using scattering and absorption simultaneously. To do this, Yoon’s group fabricated polymer-networked liquid crystals cells doped with dichroic dyes.

In their design, the polymer network structure scatters incident, or oncoming light, which is then absorbed by the dichroic dyes. The light shutters use a parallel pattern of electrodes located above and below the vertically aligned liquid crystals.

When an electric field is applied through the electrodes, the axes of the dye molecules are aligned with that of oncoming light, allowing them to absorb and scatter it. This effectively negates the light coming at the screen from its backside, rendering the display opaque – and the screen’s images fully visible.

Initially-Transparent Liquid Crystal Light Shutter

“The incident light is absorbed, but we can still see through the background with reduced light intensity,” Yoon said.

In its resting state, this setup lets light pass through, so power need only be applied when you want to switch from transparent window view to opaque monitor view. And because the display’s on-off switch is an electric field, it has a response time of less than one millisecond – far faster than that of contemporary light shutters, which rely on the slow relaxation of liquid crystals for their off-switch.

Future work for Yoon’s group includes respectively increasing and decreasing the device’s transmittance at the transparent and opaque states, as well as developing a bi-stable light shutter which consumes power only when states are being switched, rather than maintained.

###

For More Information:
Jason Socrates Bardi
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Article Title

Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes

Authors

Joon Heo, Jae-Won Huh and Tae-Hoon Yoon

Author Affiliations

Pusan National University


AIP Advances

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences.

http://aipadvances.aip.org

Share:
  • Whiteboards of the Future: New Electronic Paper Could Make Inexpensive Electronic Displays
  • New IVF Device May Improve Fertility Treatment

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • CareersĀ 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏