AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Whole-Heart Computational Modeling Provides Insights for Individualized Treatment

  • September 28, 2021
  • Biophysics Reviews
  • News
Share:

From the Journal: Biophysics Reviews

WASHINGTON, September 28, 2021 — Whole-heart ventricular modeling has come a long way in recent years and is currently witnessing the evolution of a variety of computational approaches, especially within the realm of personalized technologies for patient-specific clinical applications.

Whole-heart ventricular arrhythmia modeling can improve mechanistic insights and clinical support, as well as lead to novel therapeutics. CREDIT: Eric Sung, Sevde Etoz, Yingnan Zhang, and Natalia A. Trayanova
Whole-heart ventricular arrhythmia modeling can improve mechanistic insights and clinical support, as well as lead to novel therapeutics. CREDIT: Eric Sung, Sevde Etoz, Yingnan Zhang, and Natalia A. Trayanova

Ventricular arrhythmias, which are abnormal heartbeats, are one of the leading causes of mortality worldwide. To pursue a better mechanistic understanding of ventricular arrhythmias, Johns Hopkins University researchers are turning to whole-heart computational models.

In Biophysics Reviews, from AIP Publishing, the researchers describe the progress using various computational approaches to address the mechanisms of cardiac dysfunction and issues related to the clinical application of computation-driven diagnostic and therapeutic approaches for cardiac disease and arrhythmias.

The heart’s electrical properties can be modeled via fundamental biophysical principles determined through basic science experiments.

Whole-heart computational models are multiscale, which means they factor in both cellular- and organ-level properties. These models include most of the biophysical complexity of an individual patient’s cardiac pathology.

This complex biophysical system “can be represented using a set of mathematical equations,” said Natalia A. Trayanova, a co-author and professor of biomedical engineering and medicine at Johns Hopkins University. “Solving these equations using computer software allows us to run detailed simulations to mimic the heart’s electrical activity.”

Computational models of the heart linking cellular electrophysiology to whole-organ behavior are emerging as promising platforms for in-silico evaluation of novel diagnostic and therapeutic strategies.

“Personalized computational modeling of patient hearts is making strides developing models that incorporate the individual geometry and structure of the heart, as well as other patient-specific information,” Trayanova said.

These patient-specific models can help predict risk of sudden cardiac death or the outcome of a cardiac procedure.

“Patient-specific models are also used for determining the optimal treatment for arrhythmia, both atrial and ventricular, with the latter often based on different biophysical underpinnings,” said Trayanova. “These types of models can enable fast evaluation of medical device settings and patient-​selection criteria, as well as the development of novel therapeutic agents.

“Computational modeling can also be combined synergistically with machine learning approaches to better account for the information available within patient health records.”

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications

Authors

Eric Sung, Sevde Etoz, Yingnan Zhang, and Natalia A. Trayanova

Author Affiliations

Johns Hopkins University


Biophysics Reviews

Biophysics Reviews publishes high quality reviews and original research covering all areas of biophysics. The journal’s focus includes experimental and theoretical research in fundamental issues in biophysics alongside its applications in other branches of science, medicine, and engineering.

https://aip.scitation.org/journal/bpr

Share:
  • Tracking Muscle Activity with Clothes on Your Back
  • Road Map Outlines Hurdles in Next-Generation Cathode Development for Powering Electric Vehicles

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏