AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Wearable, Inexpensive Robotic Sleeve for Lymphedema Treatment

  • May 5, 2022
  • Biomicrofluidics
  • News
Share:

From the Journal: Biomicrofluidics

WASHINGTON, May 5, 2022 – Lymphedema often occurs in survivors of breast cancer, because they are at high risk for lymph node damage or removal during surgical procedures. The locations of these nodes often make fluid and proteins collect in the arm, so treatment consists of compression sleeves that seek to restore normal flow. However, current techniques are expensive and inconvenient.

In Biomicrofluidics, by AIP Publishing, researchers from the University of Waterloo’s Microfluidics Laboratory and DIESEL Biomechanics Laboratory, Breast Rehab, and Myant, Inc. developed a soft robotic sleeve controlled with a microfluidic chip that reduces treatment cost, weight, and power consumption. The prototype is more portable than previous devices, and the underlying mechanisms can extend to other treatments, such as prosthetics.

Images of the lymphedema sleeve (left) and a diagram of its components (right). The microfluidic chip sequentially inflates and deflates balloons, creating pressure and pushing fluid through the arm. CREDIT: Carolyn Ren
Images of the lymphedema sleeve (left) and a diagram of its components (right). The microfluidic chip sequentially inflates and deflates balloons, creating pressure and pushing fluid through the arm. CREDIT: Carolyn Ren

The microfluidic chip has 16 channels, each acting as a sort of pipeline. Just as pipelines with different diameters create different flow speeds, the channels each have a different resistance. The differing resistances create a time delay between the flow through each channel, causing balloons in the sleeve to sequentially inflate and push fluid upwards, out of the arm.

The design requires only two miniature valves, which take the place of eight bulky, energy-consuming valves. As a result, the cost is cut from thousands to hundreds of dollars. It operates using a 3.7-volt lithium-ion battery within a control box weighing less than an iPhone 13, in contrast to previous technology that required a wall outlet.

“My definition of wearable is you can wear it and do whatever you want, and not be plugged into a wall,” said author Carolyn Ren. “Bringing in the microfluidics field, we wanted to make the system battery-powered but without compromising the performance.”

By placing a sensor between the sleeve prototype and the arm, the team measured and optimized the sleeve pressure to encourage fluid flow.

The researchers are currently recruiting for patient testing. They intend to use their device patent to develop a commercially viable product.

Microfluidic chips could also be incorporated into prosthetics for lower leg amputees.

Pressure is unevenly distributed around the leg during walking, and the leg swells to change sizes throughout the day, but traditional prosthetic sockets cannot adjust accordingly. A balloon system like the lymphedema sleeve could apply the correct amount of pressure to the leg dynamically and inflate or deflate to change size on demand.

“We look at these problems from different angle, but I think there are a lot more things microfluidics can contribute to these areas,” said Ren.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

A novel air microfluidics-enabled soft robotic sleeve: Toward realizing innovative lymphedema treatment

Authors

Run Ze Gao, Vivian Mai, Nicholas Levinski, Jacqueline Mary Kormylo, Robin Murdock, Clark Dickerson, and Carolyn Ren

Author Affiliations

University of Waterloo, Breast Rehab, Myant Inc.


Biomicrofluidics

Biomicrofluidics publishes research highlighting fundamental physiochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.

http://bmf.aip.org

Share:
  • Face Shape Influences Mask Fit, Suggests Problems with Double Masking Against COVID-19
  • Exploring Dynamics of Blood Flow in Vascular, Atherosclerotic Diseases

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏