AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Uncorking Champagne Bottle Produces Supersonic Shock Waves

  • June 1, 2022
  • Physics of Fluids
  • News
Share:

From the Journal: Physics of Fluids

WASHINGTON, June 1, 2022 – Opening a bottle of champagne traditionally marks the beginning of a festive celebration. Following the fun pop of the cork, a fizz of bubbles releases into the air, and finally, there is the pleasant tingle on the tongue.

But there is much more that comes out of the pop than meets the senses, according to researchers in France and India. In Physics of Fluids, by AIP Publishing, computational fluid dynamics simulations revealed the formation, evolution, and dissipation of shock wave patterns as the carbon dioxide mixture shoots through the bottleneck in the first millisecond after cork popping.

Time sequence showing details of a cork expelled from a champagne bottleneck stored at 20 degrees Celsius captured through high-speed imaging. CREDIT: Gérard Liger-Belair
Time sequence showing details of a cork expelled from a champagne bottleneck stored at 20 degrees Celsius captured through high-speed imaging. CREDIT: Gérard Liger-Belair

The findings could provide insight into the complex and transient behavior of supersonic flow in applications ranging from rocket launchers, ballistic missiles, and wind turbines to electronics manufacturing and underwater vehicles. The simulations build on experimental research in 2019 that showed, for the first time, the formation of shock waves during cork popping.

“We wanted to better characterize the unexpected phenomenon of a supersonic flow that takes place during champagne bottle uncorking,” said co-author Robert Georges, from the Université de Rennes 1. “We hope our simulations will offer some interesting leads to researchers, and they might consider the typical bottle of champagne as a mini-laboratory.”

In the initial uncorking phase, the gas mixture is partially blocked by the cork, preventing the ejecting champagne from reaching the speed of sound. But as the cork further releases, the gas mixture escapes radially at supersonic speed, balancing its pressure through a succession of normal and oblique shock waves.

The waves combine to form shock diamonds, patterns of rings typically seen in rocket exhaust plumes. The bottle symmetry leads to a crown-shaped supersonic expansion. Eventually, the pressure becomes too low to maintain an appropriate nozzle pressure ratio for supersonic speed at the bottleneck and cork’s edge.

“Our paper unravels the unexpected and beautiful flow patterns that are hidden right under our nose each time a bottle of bubbly is uncorked,” said co-author Gérard Liger-Belair, from Université de Reims Champagne-Ardenne. “Who could have imagined the complex and aesthetic phenomena hidden behind such a common situation experienced by any one of us?”

The researchers plan to explore other parameters, such as temperature, volume, and bottleneck diameter, along with the physicochemical processes that accompany champagne bottle uncorking. For instance, they are interested in how supersonic flow is affected by ice particle formation caused by the drastic temperature drop as the fizz ejects from the bottle.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Computational Fluid Dynamic simulation of the supersonic CO2 flow during champagne cork popping

Authors

Abdessamad Benidar, Robert Georges, Vinayak Kulkarni, Daniel Cordier, and Gérard Liger-Belair

Author Affiliations

Université de Rennes 1, Université de Reims Champagne-Ardenne, Indian Institute of Technology Guwahati


Physics of Fluids

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids.

http://pof.aip.org

Share:
  • COVID-19 Superspreader Events Originate from Small Number of Carriers
  • ‘Urban Canyons’ Prolong Sonic Booms in Cities

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏