AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Tiny Robots, Big Impact: Revolutionizing Infertility Treatment with Magnetic Microrobots

  • December 17, 2024
  • AIP Advances
  • News
Share:

Magnetically driven robotic microscrews offer a new solution for fallopian tube blockages

From the Journal: AIP Advances

Magnetic robotic microscrew for oviduct recanalization. The magnetic microrobot clears the blockage based on mechanical motion under the rotating magnetic field. Credit: Liu et al.
Magnetic robotic microscrew for oviduct recanalization. The magnetic microrobot clears the blockage based on mechanical motion under the rotating magnetic field. Credit: Liu et al.

WASHINGTON, Dec. 17, 2024 — Infertility affects an estimated 186 million people worldwide, with fallopian tube obstruction contributing to 11%-67% of female infertility cases. In AIP Advances, researchers at the SIAT Magnetic Soft Microrobots Lab have developed an innovative solution using a magnetically driven robotic microscrew to treat fallopian tube blockages.

“This new technology offers a potentially less invasive alternative to the traditional surgical methods currently used to clear tubal obstructions, which often involve the use of conventional catheters and guidewires,” said author Haifeng Xu.

The microrobot is made from nonmagnetic photosensitive resin, coated with a thin iron layer to give it magnetic properties. By applying an external magnetic field, the robot rotates, generating translational motion that enables it to navigate through a glass channel simulating a fallopian tube. The robot successfully clears a cell cluster obstruction placed in the channel, mimicking a typical blockage in the female reproductive system. This magnetic control provides precise navigation through the delicate and narrow structures of the fallopian tube.

The design of the microrobot is another key innovation. It has a screw-shaped body with a helical structure, a cylindrical central tube, and a disk-shaped tail. The helix-shaped structure is crucial for propulsion, while the disk-shaped tail helps stabilize the robot’s motion. As the screw rotates, it generates a vortex field that helps push fragmented debris toward the tail, clearing the blockage more effectively.

In tests, the microrobot demonstrated both effectiveness and efficiency in clearing the simulated blockage, with the vortex created by the rotating screw propelling debris away from the obstruction.

Looking to the future, the research team plans to make the microrobot smaller and more advanced. They also aim to test the robot in isolated organ models and incorporate in vivo imaging systems to track the microrobot’s movement and position in real time. The team also envisions expanding the robot’s applications in surgery, including automatic control systems that could enhance the efficiency of blockage removal and other medical procedures.

“The ultimate goal is to provide a more effective, minimally invasive solution for patients suffering from infertility,” said Xu.

###

Article Title

Magnetically driven robotic microscrew for the oviduct recanalization

Authors

Xiangchao Liu, Yuan Liu, Jing Huang, Xuhui Zhao, Jiangfan Yu, Xiaopu Wang, and Haifeng Xu

Author Affiliations

SIAT Magnetic Soft Microrobots Lab


AIP Advances

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences.

http://aipadvances.aip.org

Share:
  • Rethinking the Brain Pacemaker: How Better Materials Can Improve Signals
  • Training Solar Panels to Dance with the Wind

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏