AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

The Mask Matters: How Masks Affect Airflow, Protection Effectiveness

  • December 15, 2020
  • Physics of Fluids
  • News
Share:

From the Journal: Physics of Fluids

WASHINGTON, December 15, 2020 — Even though it has been widely known that wearing a face mask will help mitigate the community spread of COVID-19, less is known regarding the specific effectiveness of masks in reducing the viral load in the respiratory tracts of those wearing them.

Pressure and particle motions with and without a mask CREDIT: Jinxiang Xi
Pressure and particle motions with and without a mask CREDIT: Jinxiang Xi

In Physics of Fluids, by AIP Publishing, researchers from the University of Massachusetts Lowell and California Baptist University examined the effect of wearing a three-layer surgical mask on inspiratory airflows and the mask’s effects on the inhalation and deposition of ambient particles in the upper respiratory airways.

“It is natural to think that wearing a mask, no matter new or old, should always be better than nothing. Our results show that this belief is only true for particles larger than 5 micrometers, but not for fine particles smaller than 2.5 micrometers,” said author Jinxiang Xi.

The researchers found that wearing a mask with low (less than 30%) filtration efficiency can be worse than without.

They developed a computational face mask model using a physiologically realistic model of a person wearing a surgical mask with pleats and then using numerical methods to track the particles through the mask. They examined the behavior and fates of aerosols passing through the mask, onto the face, into the airway, and, eventually, where they deposit in the nose, pharynx, or deep lung.

The model showed a mask changes the airflow around the face, so that instead of air entering the mouth and nose through specific paths, air enters the mouth and nose through the entire mask surface but at lower speeds.

The lower speed near the face favors the inhalation of aerosols into the nose, so even though masks filter out certain numbers of particles, more particles escaping mask filtration can enter the respiratory tract.

They found the filtration efficiency of the three-layer surgical mask can vary from 65%, if new, to 25%, when used, so wearing a 65% mask properly will provide good protection, but wearing a 25% filtration mask can be worse than not wearing one at all.

“We hope public health authorities strengthen the current preventative measures to curb COVID-19 transmission, like choosing a more effective mask, wearing it properly for the highest protection, and avoid using an excessively used or expired surgical mask,” said Xi.

The researchers found the pleats of a surgical face mask significantly affect airflow patterns, suggesting that mask shape should also be considered as an important factor when estimating mask protection efficiency and designing new masks. Xi said they will further study the effects of mask shapes on human airway protection efficiency.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Effects of mask-wearing on the inhalability and deposition of airborne SARS-CoV-2 aerosols in human upper airway

Authors

Jinxiang Xi, Xihua April Si, and Ramaswamy Nagarajan

Author Affiliations

University of Massachusetts Lowell and California Baptist University


Physics of Fluids

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids.

http://pof.aip.org

Share:
  • Fast Walking in Narrow Corridors Can Increase COVID-19 Transmission Risk
  • Masks Not Enough to Stop COVID-19’s Spread Without Distancing

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏