AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Strange Silk: Why Rappelling Spiders Don’t Spin Out of Control

  • July 7, 2017
  • Applied Physics Letters
  • News
Share:

Dragline silk from golden orb weaver spiders dissipates energy to prevent spinning

The golden silk orb weaver (Nephila pilipes) creates dragline silk that prevents it from spinning while hanging from its web.  Credit: Kai Peng of Huazhong University of Science and TechnologyWASHINGTON, D.C., July 7, 2017 — The last time you watched a spider drop from the ceiling on a line of silk, it likely descended gracefully on its dragline instead of spiraling uncontrollably, because spider silk has an unusual ability to resist twisting forces. 

In a new paper appearing this week in Applied Physics Letters, from AIP Publishing, researchers from China and the U.K. showed that unlike human hair, metal wires or synthetic fibers, spider silk partially yields when twisted. This property quickly dissipates the energy that would otherwise send an excited spider spinning on the end of its silk. 

“Spider silk is very different from other, more conventional materials,” said Dabiao Liu of Huazhong University of Science and Technology. “We find that the dragline from the web hardly twists, so we want to know why.” 

A greater understanding of how spider silk resists spinning could lead to biomimetic fibers that mimic these properties for multiple potential uses such as in violin strings, helicopter rescue ladders and parachute cords. “If we understood how spider silk achieves this, then maybe we could incorporate the properties into our own synthetic ropes,” said David Dunstan of Queen Mary University of London. 

Spiders use dragline silk for the outer rim and spokes of their webs, and as a lifeline when dropping to the ground. The material has intrigued scientists because of its incredible strength, stretchiness and ability to conduct heat, but little research has focused on its torsional properties — how it responds to twisting. 

This microscopic image shows the glands in a spider’s abdomen from which researcher collected double threads of dragline silk.  Credit: Dabiao Liu and Kai Peng of Huazhong University of Science and TechnologyResearchers used a torsion pendulum, the same tool used by Henry Cavendish to weigh the Earth in the 1790s, to investigate dragline silk from two species of golden silk orb weavers. They collected strands of silk from captive spiders and suspended the strands inside a cylinder using two washers at the end to mimic a spider. The cylinder isolated the silk from environmental disturbances and kept the strand at a constant humidity, because water can cause the fibers to contract. A rotating turntable twisted the silk while a high-speed camera recorded the silk’s back and forth oscillations over hundreds of cycles. 

Unlike synthetic fibers and metals, spider silk deforms slightly when twisted, which releases more than 75 percent of its potential energy, and the oscillations rapidly slow. After twisting, the silk partially snaps back. 

The team suspects that this unusual behavior is linked to the silk’s complex physical structure, consisting of a core of multiple fibrils inside a skin. Each fibril has segments of amino acids in organized sheets and others in unstructured looping chains. They propose that torsion causes the sheets to stretch like elastic, and warp the hydrogen bonds linking the chains, which deform like plastic. The sheets can recover their original shape, but the chains remain partially deformed. The pendulum exhibits this change with reduced magnitude of the silk’s oscillations, as well as a shifting of the equilibrium point of the oscillation. 

Researchers examined the morphology of dragline silk under the microscope to ensure quality before testing on the torsion pendulum.  Credit: Dabiao Liu and Xiaoming Zhao of Queen Mary University of LondonThe group will continue to investigate how spider silk reacts to twisting in this way and is also looking into how it maintains its stiffness during torsion, what effect humidity has and to what degree air helps dissipate the energy. “There is a lot of further work needed,” Dunstan said. “This spider silk is displaying a property that we simply don’t know how to recreate ourselves, and that is fascinating.” 

###

For More Information:
Julia Majors
media@aip.org
301-209-3090
@AIPPhysicsNews

Article Title

Peculiar torsion dynamical response of spider dragline silk

Authors

Dabiao Liu, Longteng Yu, Yuming He, Kai Peng, Jie Liu, Juan Guan and D. J. Dunstan

Author Affiliations

Huazhong University of Science and Technology, Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment, Queen Mary University of London, Hubei University and Beihang University


Applied Physics Letters

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.
Share:
  • Vortex-Antivortex Pairs Found in Magnetic Trilayers
  • Simulating Splash at the Microscopic Level

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏