AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Robotic Eyes Mimic Human Vision for Superfast Response to Extreme Lighting

  • July 1, 2025
  • Applied Physics Letters
  • News
Share:

Quantum dots infuse a machine vision sensor with superhuman adaptation speed.

Fabrication of nanoscale light-sensitive materials, known as quantum dots, created a device that reacts to light faster than the human eye. It could revolutionize autonomous vehicles. Credit: Lin et al.
Fabrication of nanoscale light-sensitive materials, known as quantum dots, created a device that reacts to light faster than the human eye. It could revolutionize autonomous vehicles. Credit: Lin et al.

WASHINGTON, July 1, 2025 — In blinding bright light or pitch-black dark, our eyes can adjust to extreme lighting conditions within a few minutes. The human vision system, including the eyes, neurons, and brain, can also learn and memorize settings to adapt faster the next time we encounter similar lighting challenges.

In an article published this week in Applied Physics Letters, by AIP Publishing, researchers at Fuzhou University in China created a machine vision sensor that uses quantum dots to adapt to extreme changes in light far faster than the human eye can — in about 40 seconds — by mimicking eyes’ key behaviors. Their results could be a game changer for robotic vision and autonomous vehicle safety.

“Quantum dots are nano-sized semiconductors that efficiently convert light to electrical signals,” said author Yun Ye. “Our innovation lies in engineering quantum dots to intentionally trap charges like water in a sponge then release them when needed — similar to how eyes store light-sensitive pigments for dark conditions.”

The sensor’s fast adaptive speed stems from its unique design: lead sulfide quantum dots embedded in polymer and zinc oxide layers. The device responds dynamically by either trapping or releasing electric charges depending on the lighting, similar to how eyes store energy for adapting to darkness. The layered design, together with specialized electrodes, proved highly effective in replicating human vision and optimizing its light responses for the best performance.

“The combination of quantum dots, which are light-sensitive nanomaterials, and bio-inspired device structures allowed us to bridge neuroscience and engineering,” Ye said.

Not only is their device design effective at dynamically adapting for bright and dim lighting, but it also outperforms existing machine vision systems by reducing the large amount of redundant data generated by current vision systems.

“Conventional systems process visual data indiscriminately, including irrelevant details, which wastes power and slows computation,” Ye said. “Our sensor filters data at the source, similar to the way our eyes focus on key objects, and our device preprocesses light information to reduce the computational burden, just like the human retina.”

In the future, the research group plans to further enhance their device with systems involving larger sensor arrays and edge-AI chips, which perform AI data processing directly on the sensor, or using other smart devices in smart cars for further applicability in autonomous driving.

“Immediate uses for our device are in autonomous vehicles and robots operating in changing light conditions like going from tunnels to sunlight, but it could potentially inspire future low-power vision systems,” Ye said. “Its core value is enabling machines to see reliably where current vision sensors fail.”

###

Article Title

A back-to-back structured bionic visual sensor for adaptive perception

Authors

Xing Lin, Zexi Lin, Wenxiao Zhao, Sheng Xu, Enguo Chen, Tailiang Guo, and Yun Ye

Author Affiliations

Fuzhou University, Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China


Applied Physics Letters

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.
Share:
  • Charging Devices with Indoor Lighting
Decorative footer image

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up
AIP Publishing and the Purpose Led Publishing logos

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC