AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Probing Deeper into Origins of Cosmic Rays

  • May 25, 2021
  • AIP Advances
  • News
Share:

From the Journal: AIP Advances

WASHINGTON, May 25, 2021 — Cosmic rays are high-energy atomic particles continually bombarding Earth’s surface at nearly the speed of light. Our planet’s magnetic field shields the surface from most of the radiation generated by these particles. Still, cosmic rays can cause electronic malfunctions and are the leading concern in planning for space missions.

Researchers know cosmic rays originate from the multitude of stars in the Milky Way, including our sun, and other galaxies. The difficulty is tracing the particles to specific sources, because the turbulence of interstellar gas, plasma, and dust causes them to scatter and rescatter in different directions.

Schematic representation of cosmic rays propagating through magnetic clouds. CREDIT: Salvatore Buonocore
Schematic representation of cosmic rays propagating through magnetic clouds. CREDIT: Salvatore Buonocore

In AIP Advances, by AIP Publishing, University of Notre Dame researchers developed a simulation model to better understand these and other cosmic ray transport characteristics, with the goal of developing algorithms to enhance existing detection techniques.

Brownian motion theory is generally employed to study cosmic ray trajectories. Much like the random motion of pollen particles in a pond, collisions between cosmic rays within fluctuating magnetic fields cause the particles to propel in different directions.

But this classic diffusion approach does not adequately address the different propagation rates affected by diverse interstellar environments and long spells of cosmic voids. Particles can become trapped for a time in magnetic fields, which slow them down, while others are thrust into higher speeds through star explosions.

To address the complex nature of cosmic ray travel, the researchers use a stochastic scattering model, a collection of random variables that evolve over time. The model is based on geometric Brownian motion, a classic diffusion theory combined with a slight trajectory drift in one direction.

In their first experiment, they simulated cosmic rays moving through interstellar space and interacting with localized magnetized clouds, represented as tubes. The rays travel undisturbed over a long period of time. They are interrupted by chaotic interaction with the magnetized clouds, resulting in some rays reemitting in random directions and others remaining trapped.

Monte Carlo numerical analysis, based on repeated random sampling, revealed ranges of density and reemission strengths of the interstellar magnetic clouds, leading to skewed, or heavy-tailed, distributions of the propagating cosmic rays.

The analysis denotes marked superdiffusive behavior. The model’s predictions agree well with known transport properties in complex interstellar media.

“Our model provides valuable insights on the nature of complex environments crossed by cosmic rays and could help advance current detection techniques,” author Salvatore Buonocore said.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Anomalous diffusion of cosmic rays: A geometric approach

Authors

Salvatore Buonocore and Mihir Sen

Author Affiliations

University of Notre Dame


AIP Advances

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences.

http://aipadvances.aip.org

Share:
  • Wake Steering Potentially Boosts Energy Production at US Wind Plants
  • Silver Attacks Bacteria, Gets ‘Consumed’

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • CareersĀ 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏