AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Prisoner’s Dilemma Game Reveals Cooperation Leads to Leadership

  • October 23, 2019
  • Chaos
  • News
Share:

From the Journal: Chaos

WASHINGTON, D.C., October 23, 2019 — Game theory is a field which applies mathematics to understand the science behind logical decision-making behavior and social structures. Game theory has historically studied cooperation and hierarchy, and has sought to explain why individuals cooperate, even though they might be better off not to do so.

Scientists recently re-examined a classic game theory, described in AIP Publishing publication Chaos, called the prisoner’s dilemma. The prisoner’s dilemma is a decision analysis, where two prisoners, who are unable to communicate with each other, have to choose to either cooperate with each other or act in their individual best interests. If the parties choose to cooperate, they both get shorter prison sentences, but if one betrays the other, the betrayer will get zero prison time, and the other will get a larger sentence.

This situational dilemma has diverse applications in fields such as economics and medicine.

Illustration of the emergence of the game learning skeleton from the underlying interaction graph. The link directing to the most frequently imitated neighbor is selected to the learning skeleton. CREDIT: Zhihai Rong, Zhi-Xi Wu, Xiang Li, Petter Holme and Guanrong Chen

The authors used a specialized graph to map a social network of cooperators and their neighbors. They discovered cooperators can attract more neighbors to follow their behaviors and are more likely to become leaders, indicating different learning patterns exist between cooperators and defectors.

“Through the correlation analysis, it is found that in the spatial game, the more time an individual holds on to cooperation strategy, the more likely they are to become a leader whose behavior is easy to be imitated by their neighbors. This can build up a long-term reciprocity among them,” author Zhihai Rong said.

From a sociological perspective, individuals adapt the successful behaviors of others to move upward in society. The authors discovered cooperators and neighbors who mimic the successful behavior of cooperators and become cooperators themselves are not all collaborating peers but instead form a hierarchy.

“The different learning patterns between cooperation and defection may provide some clues to predict the strategy an individual holds to by analyzing the learning process of her or his neighbors,” Rong said.

Further development of this research can be applied to temporal networks. It is also expected to help scientists understand how epidemics spread and oscillators synchronize.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Heterogeneous cooperative leadership structure emerging from random regular graphs

Authors

Zhihai Rong, Zhi-Xi Wu, Xiang Li, Petter Holme and Guanrong Chen

Author Affiliations

University of Electronic Science and Technology of China, Lanzhou University, Fudan University, Tokyo Institute of Technology, City University of Hong Kong


Chaos

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.

http://chaos.aip.org

Share:
  • 3D Printing, Bioinks Create Implantable Blood Vessels
  • Structured Light Promises Path to Faster, More Secure Communications

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏