AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Photovoltaics Industry Can Help Meet Paris Agreement Targets

  • October 27, 2020
  • Journal of Renewable and Sustainable Energy
  • News
Share:

From the Journal: Journal of Renewable and Sustainable Energy

WASHINGTON, October 27, 2020 — To meet the Paris Agreement’s daunting goal of preventing Earth’s average temperature from rising more than 2 degrees Celsius (3.6 degrees Fahrenheit) above its level in preindustrial times, one of the best options for the energy economy will involve a shift to 100% renewable energy using solar energy and several other clean energy sources.

A fast growth scenario of the photovoltaics industry requires increasing annual production volume 25% per year, which would bring the annual production to a stabilized level of about 3 gigawatts per year. CREDIT: Pierre Verlinden
A fast growth scenario of the photovoltaics industry requires increasing annual production volume 25% per year, which would bring the annual production to a stabilized level of about 3 gigawatts per year. CREDIT: Pierre Verlinden

While no one knows exactly how an increase above 2 degrees Celsius would impact the planet, extraordinary climatic events would likely make many parts of the world uninhabitable with significant desertification, ocean acidification, and rise of seawater level, as well as floods, wildfires, hurricanes, and tornadoes.

In the Journal of Renewable and Sustainable Energy, from AIP Publishing, Pierre J. Verlinden, founder of AMROCK Pty. Ltd. in Australia, describes a model developed to predict what is necessary for the solar industry to meet Paris Agreement targets.

“Our planet is on the path of an average temperature increase of 4 degrees Celsius before the end of this century, with respect to the average Earth temperature before the industrial age, and the result will be catastrophic,” Verlinden said.

Climate experts predict only 800 gigatons of carbon dioxide can be emitted before crossing the 2 degrees Celsius line. This means that at the current global emission of 36 gigatons per year, there is a 35-year window to reduce our emissions to zero.

One way to achieve this goal is to change the way energy is produced and consumed.

“Our vision is solar photovoltaics can play a central role in a transformed sustainable energy economy with 100% decarbonized electricity generation to power directly or indirectly — through the production of green hydrogen or other synthetic fuels — all energy sectors and industrial processes,” said Verlinden.

The world will require, in addition to other renewable energy sources like wind and hydro, about 70 to 80 terawatts of cumulative capacity from solar photovoltaic systems. This represents more than 100 times the world’s current solar photovoltaic installed capacity.

“Within the next 10 years, the industry needs to increase its production rate by a factor of about 30,” he said.

A model developed by Verlinden and colleagues to predict the efficiency of solar cells and their cost to manufacture during the next few decades shows there “is no fundamental barrier to achieving this goal,” he said.

The financial requirement to grow the production rate (capital expenditures to build new production lines) is decreasing at a rate of 18% per year, driven by productivity improvements and a combination of higher-throughput per tool, larger wafers, and improved cell efficiency.

“In terms of material sustainability, the only major issue is the use of silver for metallization of silicon solar cells,” said Verlinden. “We need to reduce the use of silver in silicon solar cells from about 29 tons per gigawatt to less than 5 tons per gigawatt.”

He cautions that while the objective of a cumulative installation of 70 or 80 terawatts by 2055 is achievable with a simple annual growth of the production rate of about 15% per year, pursuing this goal will result in a solar photovoltaic industry much larger than necessary. This could lead to a significant downturn when the objective of 80 terawatts is reached.

“This negative impact can be avoided if we right now accelerate the growth during the next 10 years and then stabilize the global production to 3 to 4 terawatts per year,” Verlinden said.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Future challenges for photovoltaic manufacturing at the terawatt level

Authors

Pierre Verlinden

Author Affiliations

AMROCK Pty Ltd.


Journal of Renewable and Sustainable Energy

Journal of Renewable and Sustainable Energy is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy that apply to the physical science and engineering communities.

http://jrse.aip.org

Share:
  • Random Effects Key to Containing Epidemics
  • Tracking Flight Trajectory of Evaporating Cough Droplets

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC