AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Over the Top: Car Jump Study Turns Over Old Physics Problem

  • November 24, 2021
  • The Physics Teacher
  • News
Share:

From the Journal: The Physics Teacher

WASHINGTON, November 24, 2021 — Many introductory physics courses present students with a theoretical scenario for an assignment. If an automobile is moving at a steady speed over a hill in the shape of a vertical circular arc, what is the maximum speed it can attain without losing contact with the road at the crest of the hill?

As a car goes over a circular hill (subject to the normal force N, gravitational force mg, and frictional force f) is it most likely to lose contact with the road on the way up the hill, at the crest of the hill, or on the way back down the far side of the hill? How does your answer depend on the manner in which the car's speed does or does not change? CREDIT: C.E. Mungan
As a car goes over a circular hill (subject to the normal force N, gravitational force mg, and frictional force f) is it most likely to lose contact with the road on the way up the hill, at the crest of the hill, or on the way back down the far side of the hill? How does your answer depend on the manner in which the car’s speed does or does not change? CREDIT: C.E. Mungan

However, this problem is inherently flawed, “because if the speed of the car is such that it would lose contact at the crest, then it will lose contact well before that point,” according to Carl Mungan, a professor of physics at the U.S. Naval Academy.

In The Physics Teacher, by AIP Publishing, Mungan demonstrates that, despite numerous textbook references stating otherwise, a car will leave the ground on the downside of a peak.

“It is usually assumed in physics textbooks that a car would lose contact at the exact crest of a hill having a circular cross section,” Mungan said. “But the normal force on the car is, in fact, smaller when the road is sloped than when its tangent vector is horizontal.

“In addition, if one’s foot is off the accelerator, or if you’re doing a demo with a matchbox car on a convex track, the car’s speed decreases as it climbs the hill. Both factors imply cars will not leave the road at the very crest.”

The study presents three separate cases to illustrate the nuances of the different physics principles at play. The first examines a rigid object sliding frictionlessly like a hockey puck on ice. The second focuses on an unpowered object rolling without slipping, such as a ball. The third features a car that is driven by applying pressure on the accelerator pedal but not so hard that the tires are slipping at their points of contact with the road.

By illustrating the dynamics in each case, Mungan ultimately presents a compelling argument, dispelling the long-held notion a car can leave the road at the top of a smooth hill.

So, how does a car perform a jump? There are a number of websites that give tips on automobile hill jumping, but most of them include strong cautions.

“For actual rally car driving, it is most likely a jump will occur just beyond the crest of the hill,” Mungan said.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Over The Top

Authors

Carl Edward Mungan

Author Affiliations

U.S. Naval Academy


The Physics Teacher

ABOUT THE JOURNAL

Dedicated to the strengthening of the teaching of introductory physics at all levels, The Physics Teacher includes tutorial papers, articles on pedagogy, current research, and news in physics, as well as history, philosophy, and biography. Notes cover classroom techniques, and columns feature demonstration apparatus and book and film reviews. See https://aapt.scitation.org/journal/pte.

ABOUT AAPT

AAPT is an international organization for physics educators, physicists, and industrial scientists with members worldwide. Dedicated to enhancing the understanding and appreciation of physics through teaching, AAPT provides awards, publications, and programs that encourage teaching practical application of physics principles, support continuing professional development, and reward excellence in physics education. AAPT was founded in 1930 and is headquartered in the American Center for Physics in College Park, Maryland.

https://aapt.scitation.org/journal/pte

Share:
  • Optoelectrode Changes Reduce Injuries to Brain Tissue, Improve Nerve Research
  • Printing Technique Creates Effective Skin Equivalent, Heals Wounds

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • CareersĀ 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏