AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Optimizer Tool Designs, Evaluates, Maximizes Solar-Powered Cooling Systems

  • March 15, 2022
  • Journal of Renewable and Sustainable Energy
  • News
Share:

From the Journal: Journal of Renewable and Sustainable Energy

WASHINGTON, March 15, 2022 — Solar-powered adsorption cooling systems (SACS) have gained traction as a renewable energy technology that could provide clean power for air conditioning and refrigeration while significantly reducing the load on the electric grid. But these systems lack energy efficiency.

Solar powered adsorption cooling system image. CREDIT: Saravanan Namasivayam and Edwin Mohan
Solar powered adsorption cooling system image. CREDIT: Saravanan Namasivayam and Edwin Mohan

In the Journal of Renewable and Sustainable Energy, by AIP Publishing, researchers from Anna University in India developed an optimizer tool to design, evaluate, and maximize the performance of different types of SACS under various operating scenarios. The tool was created using Visual Basic programming language that is easy to learn and enables rapid application development.

“Our user-friendly optimizer is a multifunctional tool capable of designing and analyzing a complete solar powered adsorption refrigeration system,” co-author Edwin Mohan said. “Our tool is capable of assessing different combinations of operational parameters to determine the settings that maximize system performance.”

SACS, which work by turning solar energy into heat, consists of a sorption bed, condenser, liquid storage tank, expansion valve, and evaporator. At night, water or another refrigerant is vaporized through the evaporator.

During daylight hours, heat obtained from the sun causes the vapor to travel through the condenser, where it is reliquefied to release latent heat. The liquid eventually returns to the evaporator to repeat the process.

One of the most important elements of SACS is the pairing of materials used in the adsorption process in which atoms or molecules of a substance (the adsorbate) adhere to the surface of a porous material (the adsorbent), like activated carbon and zeolite, to maximize the surface-to-volume ratio.

In their study, the researchers used their computational tool to test two adsorbent/adsorbate pairs: activated-carbon and methanol, and zeolite and water. The experiments were carried out over four days in a prototype SACS with a cooling capacity of 0.25 kilowatts. They found the activated-carbon-methanol combination achieved a higher coefficient of performance, but the zeolite-water adsorption system could operate at higher temperatures.

The optimizer tool predicted the proper material mass concentration ratios. The method calculated the cooling load, predicted maximal performance, and conducted the overall performance analysis of the cooling system.

Although the study focused on residential home cooling systems, the researchers said their optimizer tool could be extended to higher capacity systems.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Optimization and experimental analysis of a solar-powered adsorption refrigeration system using selective adsorbent/adsorbate pairs


Journal of Renewable and Sustainable Energy

Journal of Renewable and Sustainable Energy is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy that apply to the physical science and engineering communities.

http://jrse.aip.org

Share:
  • Making Diversity, Equity, Inclusion Integral Part of Physics Education
  • Treating Cancer with Light-Sensitive Nanoscale Biomaterials

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • CareersĀ 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏