AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Modeling Improvements Promise Increased Accuracy for Epidemic Forecasting

  • October 26, 2021
  • Chaos
  • News
Share:

From the Journal: Chaos

WASHINGTON, October 26, 2021 — Accurate forecasting of epidemic scenarios is critical to implementing effective public health intervention policies. While much progress has been made in predicting the general magnitude and timing of epidemics, there’s still room for improvement in forecasting peak times, as unfortunately evidenced with H1N1 and COVID-19, when peak times occurred later than predicted.

For large R0 during the first wave, peak times are distributed around 55 days (most probable peak date) between 42 and 80 days. For the second wave at a lower R0, peak dates are distributed around 130 days on a much wider distribution as predicted by the study's theoretical and numerical model. CREDIT: Maxence Arutkin
For large R0 during the first wave, peak times are distributed around 55 days (most probable peak date) between 42 and 80 days. For the second wave at a lower R0, peak dates are distributed around 130 days on a much wider distribution as predicted by the study’s theoretical and numerical model. CREDIT: Maxence Arutkin

In Chaos, by AIP Publishing, researchers from France and Italy use dynamical stochastic modeling techniques to reveal that infection and recovery rate fluctuations play a critical role in determining peak times for epidemics.

“Some averaged quantities, like infection and recovery rates, are highly sensitive to parameter fluctuations, which means that the latter must be understood, even when average behavior is the only focus of interest,” said co-author Maxence Arutkin. “Our work shows that epidemic peak timing depends on these fluctuations, and neglecting them in epidemiological models can lead to inaccurate epidemic scenarios and unsuitable mitigation policies, not to mention enable viruses to evolve into new variants.”

Using a susceptible-infected-recovered epidemic model that incorporates daily fluctuations on control parameters, the study applies probability theory calculations to infection counts at the beginning of an epidemic wave and at peak times for populations in Italy. While previous works using standard epidemiological models have suggested there is a delay between the epidemic peak date and its prediction (without fluctuations), the researchers suggest the epidemic peak time depends not only on the mean value of the infection and recovery rates but also on their fluctuations.

To predict epidemic trajectory, an important parameter is the basic reproduction number, R0, which describes the average number of infections transmitted from an individual. Infection and recovery rate fluctuations lead to lognormal probability distribution of the number of infected people, similar in its analytical form to price distributions for financial assets.

“In the short term, even when average infections transmitted from a single individual are less than one, we can observe epidemic resurgence due to parameter fluctuations,” said Arutkin. “Also, a dispersion of the epidemic peak time can be quantified showing that, without taking these fluctuations into account, the peak time estimates are biased.”

The study reveals that improved prediction depends on both R0 levels and fluctuations in infection and recovery rates and may provide policymakers with a tool to assess the consequences of parameter fluctuations based on different R0 levels.

“Our findings suggest we must introduce parameter fluctuations in epidemiological models going forward,” said Arutkin.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Delayed epidemic peak caused by infection and recovery rate fluctuations

Authors

Maxence Arutkin, Davide Faranda, Tommaso Alberti, and Alexandre Vallée

Author Affiliations

French National Centre for Scientific Research; Laboratoire des Sciences du Climat et de l'Environnement; Universit´e Paris-Saclay & IPSL; London Mathematical Laboratory; IPSL Dynamic Meteorology Laboratory; PSL Research University; INAF-Istituto di Astrofisica e Planetologia Spaziali; Foch Hospital


Chaos

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.

http://chaos.aip.org

Share:
  • To Better Understand Speech, Focus on Who Is Talking
  • Teaching Robots to Think Like Us

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC