AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Laser Sintering Optimized for Printed Electronics

  • September 13, 2018
  • AIP Advances
  • News
Share:

New study sheds (laser) light on the best means of laying down thin-film circuitry.

From the Journal: AIP Advances

WASHINGTON, D.C., September 13, 2018 — Printed electronics use standard printing techniques to manufacture electronic devices on different substrates like glass, plastic films, and paper. Interest in this area is growing because of the potential to create cheaper circuits more efficiently than conventional methods. A new study by researchers at Soonchunhyang University in South Korea, published in AIP Advances, from AIP Publishing, provides insights into the processing of copper nanoparticle ink with green laser light. 

Kye-Si Kwon and his colleagues previously worked with silver nanoparticle ink, but they turned to copper (derived from copper oxide) as a possible low-cost alternative. Metallic inks composed of nanoparticles hold an advantage over bulk metals because of their lower melting points. Although the melting point of copper is about 1,083 degrees Celsius in bulk, according to Kwon, copper nanoparticles can be brought to their melting point at just 150 to 500 C — through a process called sintering. Then, they can be merged and bound together. 

Kwon’s group concentrates on photonic approaches for heating nanoparticles by the absorption of light. “A laser beam can be focused on a very small area, down to the micrometer level,” explained Kwon and doctorate student Md. Khalilur Rahman. Heat from the laser serves two main purposes: converting copper oxide into copper and promoting the conjoining of copper particles through melting. 

A green laser was selected for these tasks because its light (in the 500- to 800-nanometer wavelength absorption rate range) was deemed best suited to the application. Kwon was also curious because, to his knowledge, the use of green lasers in this role has not been reported elsewhere. 

In their experiment, his group used commercially available copper oxide nanoparticle ink, which was spin-coated onto glass at two speeds to obtain two thicknesses. Then, they prebaked the material to dry out most of the solvent prior to sintering. This is necessary to reduce the copper oxide film thickness and to prevent air bubble explosions that might occur from the solvent suddenly boiling during irradiation. After a series of tests, Kwon’s team concluded that the prebaking temperature should be slightly lower than 200 degrees C. 

The researchers also investigated the optimal settings of laser power and scanning speed during sintering to enhance the conductivity of the copper circuits. They discovered that the best sintered results were produced when the laser power ranged from 0.3 to 0.5 watts. They also found that to reach the desired conductivity, the laser scanning speed should not be faster than 100 millimeters per second, or slower than 10 mm/s. 

Additionally, Kwon and his group investigated the thickness of the film — before and after sintering — and its impact on conductivity. Kwon and his group concluded that sintering reduces thickness by as much as 74 percent. 

In future experiments, Kwon’s team will examine the substrate effects on sintering. Taken together, these studies can provide answers to some of the uncertainties hindering printed electronics.

###

For More Information:
Rhys Leahy
media@aip.org
301-209-3090
@AIPPhysicsNews 

Article Title

Green laser sintering of copper oxide (CuO) nano particle (NP) film to form Cu conductive lines

Authors

Md. Khalilur Rahman, Zhao Lu and Kye-Si Kwon

Author Affiliations

Soonchunhyang University and Comilla University


AIP Advances

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences.

http://aipadvances.aip.org

Share:
  • Detecting Hydrogen Using the Extraordinary Hall Effect in Cobalt-Palladium Thin Films
  • New World Record Magnetic Field

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC