AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

How Cruise Ships Can Steer Clear of Viral Spread

  • October 31, 2023
  • Physics of Fluids
  • News
Share:

More ventilation does not mean safer cabin conditions.

From the Journal: Physics of Fluids

Simulation of person walking and coughing, with the dispelled air represented as a red plume. In each section, the red plume moves differently based on the air ventilation.
Snapshots of the droplets and flow field at various instances for a volumetric flow rate of 120 m3/h (3 air changed per hour). Credit: Dimitris Drikakis

WASHINGTON, Oct. 31, 2023 – When COVID-19 began to spread across the globe, its effects were significantly pronounced on cruise ships. Indeed, compared to other population segments, cruise ship passengers became disproportionately infected and often, ironically, stranded on board to quarantine. That’s why focus has been directed at addressing the need for improved ventilation on cruise ships – dispersing fresh air in cabins and other enclosed spaces is critical for mitigating viral spread.

In Physics of Fluids, by AIP Publishing, a group of researchers from Cyprus examined how ventilation can affect transmission of airborne viruses in a typical cruise ship cabin based on guidelines developed before and after the pandemic.

“The most recent standards and regulations on room safety regarding the airborne transmission of viruses focus on high rates of air exchange,” said author Dimitris Drikakis. “But this can be inefficient in terms of energy consumption, can compromise passenger comfort as it generates strong air drafts, and most importantly, can spread saliva droplets up to five times more when passengers cough.”

Drikakis and his team conducted simulations for virus droplets from a cough in a typical cruiser cabin that accommodates two or more people, with different ventilation rates and different positions of the person emitting the cough. Computational fluid dynamics testing ranged from 1.5 to 15 air changes per hour (ACH) to capture all possible scenarios, from minimal ventilation to rates exceeding the most recent recommendations.

“The study reveals that a higher ventilation rate is not the best strategy to avoid spreading airborne diseases,” Drikakis said. “Complete evaporation of the saliva droplets may not necessarily mean all viruses or bacteria become instantly inactive. Therefore, we should aim at minimum droplet spreading inside the cabin and different ventilation strategies for occupied cabins.”

After analyzing the results, the team determined the ideal use of ventilation systems to operate at medium flow rates of around 3 ACH when a cabin is occupied, to increase to 15 ACH for at least 12 minutes after it has been vacated. In this way, the air would be completely refreshed for the next occupants. They also recommend the same minimum time of 12 minutes as a “clearance wait time” for similar-sized rooms with a minimum of 15 ACH.

“Our main argument for the proposed values is the necessity to minimize droplet spreading while maintaining good ventilation levels, comfort and energy consumption,” said Drikakis. “Keeping ventilation at the proposed values reduces energy consumption and improves passenger comfort in contrast to the use of higher ventilation rates.”

###

For more information:
Wendy Beatty
media@aip.org
301-209-3090

Article Title

Virus spreading in cruiser cabin

Authors

Konstantinos Ritos, Dimitris Drikakis, and Ioannis W. Kokkinakis

Author Affiliations

University of Nicosia


Physics of Fluids

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids.

http://pof.aip.org

Share:
  • Wearing Your Heart (Monitor) on Your Sleeve
  • When languages collide, which survives?

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏