AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

How Blood Cells Deform, Recover When Traveling Through Tiny Channels

  • April 28, 2020
  • Biomicrofluidics
  • News
Share:

From the Journal: Biomicrofluidics

WASHINGTON, April 28, 2020 — Laboratory blood tests are often done by forcing samples through small channels. When the channels are very small, as in microfluidic devices, red blood cells (RBCs) are deformed and then relax back to their original shape after exiting the channel. The way the deformation and relaxation occur depends on both the flow characteristics and mechanical properties of the cell’s outer membrane.

In this week’s issue of the journal Biomicrofluidics, from AIP Publishing, a method to characterize the shape recovery of healthy human RBCs flowing through a microfluidic constricted channel is reported. This investigation revealed a coupling between the cell’s mechanical properties and the hydrodynamic properties of the flow. In addition, the method could distinguish between healthy RBCs and those infected by the malaria parasite. This suggests a possible new technique for diagnosing disease.

Red blood cells recover their shape in two ways after flowing through constricted channels. CREDIT: A. Amirouche, Université Lyon
Red blood cells recover their shape in two ways after flowing through constricted channels. CREDIT: A. Amirouche, Université Lyon

The microfluidic device consisted of a narrow channel interspersed by a succession of sawtooth-shaped wider areas. A solution of RBCs is pumped through the system by applying pressure from one end. As the cells travel through the channel, they are observed with a microscope. The images are captured with a high-speed camera and sent to a computer for analysis.

When an RBC enters a narrow channel, it takes on a parachutelike shape. When it exits into a wide region, it elongates in the direction of the flow until it meets the next widening and is again stretched by the flow.

At the final exit, two different shape recovery behaviors were observed, depending on the flow speed and viscosity of the medium. At high flow speed and viscosity, the cells get stretched upon their last exit from the channel and then recover their original shapes. At lower speed and viscosity, however, the parachutelike shape is recovered directly upon exiting.

The investigators found that the hydrodynamic conditions at which the transition between these two different recovery behaviors occurs depend on the elastic properties of the RBC.

Co-author Magalie Faivre said, “Although the time necessary for the cells to recover their shape after exiting the channel was shown to depend on the hydrodynamic conditions, we have demonstrated that, at a given stress, this recovery time can be used to differentiate healthy from Plasmodium falciparum-infected RBCs.” Plasmodium falciparum is one of the parasites that cause malaria.

The investigators are seeking to expand their study to find a way to detect “signatures” for other types of diseases.

“We are currently evaluating if our approach is able to discriminate the alteration of different structural components of the RBC membrane,” said Faivre. “To do so, we are studying RBCs from patients with malaria, sickle cell anemia and hereditary spherocytosis.”

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Dual shape recovery of red blood cells flowing out of a microfluidic constriction

Authors

A. Amirouche, J. Esteves, A. Lavoignat, S. Picot, R. Ferrigno and M. Faivre

Author Affiliations

Université Lyon


Biomicrofluidics

Biomicrofluidics publishes research highlighting fundamental physiochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.

http://bmf.aip.org

Share:
  • Emerging Wide Bandgap Semiconductor Devices Based on Silicon Carbide May Revolutionize Power Electronics
  • Fossil Fuel-Free Jet Propulsion with Air Plasmas

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏