AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Forensics Puzzle Cracked via Fluid Mechanical Principles

  • April 20, 2021
  • Physics of Fluids
  • News
Share:

From the Journal: Physics of Fluids

WASHINGTON, April 20, 2021 — In 2009, music producer Phil Spector was convicted for the 2003 murder of actress Lana Clarkson, who was shot in the face from a very short distance. He was dressed in white clothes, but no bloodstains were found on his clothing — even though significant backward blood spatter occurred.

How could his clothing remain clean if he was the shooter? This real-life forensic puzzle inspired University of Illinois at Chicago and Iowa State University researchers to explore the fluid physics involved.

Scenarios for the trajectories of droplets at three different inclination angles, where the cases predicted with accounting for the interactions with the vortex ring are shown in red, and those without are shown in blue. CREDIT: Gen Li, Nathaniel Sliefert, James B. Michael, and Alexander L. Yarin
Scenarios for the trajectories of droplets at three different inclination angles, where the cases predicted with accounting for the interactions with the vortex ring are shown in red, and those without are shown in blue. CREDIT: Gen Li, Nathaniel Sliefert, James B. Michael, and Alexander L. Yarin

In Physics of Fluids, from AIP Publishing, the researchers present theoretical results revealing an interaction of the incoming vortex ring of propellant muzzle gases with backward blood spatter.

A detailed analytical theory of such turbulent self-similar vortex rings was given by this group in earlier work and is linked mathematically to the theory of quantum oscillators.

“In our previous work, we determined the physical mechanism of backward spatter as an inevitable instability triggered by acceleration of a denser fluid, blood, toward a lighter fluid, air,” said Alexander Yarin, a distinguished professor at the University of Illinois at Chicago. “This is the so-called Rayleigh-Taylor instability, which is responsible for water dripping from a ceiling.”

Backward spatter droplets fly from the victim toward the shooter after being splashed by a penetrating bullet. So the researchers zeroed in on how these blood droplets interact with a turbulent vortex ring of muzzle gases moving from the shooter toward the victim.

They predict that backward blood spatter droplets can be entrained — incorporated and swept along within its flow — by the approaching turbulent vortex ring, even being turned around.

“This means that such droplets can even land behind the victim, along with the forward splatter being caused by a penetrated bullet,” said Yarin. “With a certain position of the shooter relative to the victim, it is possible for the shooter’s clothing to remain practically free of bloodstains.”

The physical understanding reached in this work will be helpful in forensic analysis of cases such as that of Clarkson’s murder.

“Presumably, many forensic puzzles of this type can be solved based on sound fluid mechanical principles,” said Yarin.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Blood backspatter interaction with propellant gases

Authors

Gen Li, Nathaniel Sliefert, James B. Michael, and Alexander L. Yarin

Author Affiliations

University of Illinois at Chicago and Iowa State University


Physics of Fluids

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids.

http://pof.aip.org

Share:
  • Reversal of Blood Droplet Flight Predicted, Captured in Experiments
  • Combining Light, Superconductors Could Boost AI Capabilities

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • CareersĀ 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏