AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Finding Alternatives to Diamonds for Drilling

  • July 23, 2019
  • Journal of Applied Physics
  • News
Share:

From the Journal: Journal of Applied Physics

WASHINGTON, D.C., July 23, 2019 — Diamonds aren’t just a girl’s best friend — they’re also crucial components for hard-wearing industrial components, such as the drill bits used to access oil and gas deposits underground. But a cost-efficient method to find other suitable materials to do the job is on the way.

Diamond is one of the only materials hard and tough enough for the job of constant grinding without significant wear, but as any imminent proposee knows, diamonds are pricey. High costs drive the search for new hard and superhard materials. However, the experimental trial-and-error search is itself expensive.

A simple and reliable way to predict new material properties is needed to facilitate modern technology development. Using a computational algorithm, Russian theorists have published just such a predictive tool in the Journal of Applied Physics, from AIP Publishing.

“Our study outlines a picture that can guide experimentalists, showing them the direction to search for new hard materials,” said the study’s first author Alexander Kvashnin, from the Skolkovo Institute of Science and Technology and Moscow Institute of Physics and Technology.

As fiber optics, with its fast transmission rate, replaced copper wire communications, so too do materials scientists search to find new materials with desirable properties to support modern technology. When it comes to the mining, space and defense industries, it’s all about finding materials that don’t break easily, and for that, the optimal combination of hardness and fracture toughness is required. But it’s tricky to theoretically predict hardness and fracture toughness. Kvashnin explained that although lots of predictive models exist, he estimates they are 10%-15% out off the mark at best.

The Russian team recently developed a computational approach that considers all possible combinations of elements in Dmitri Mendeleev’s periodic table — christened “Mendelevian search.” They’ve used their algorithm to search for optimal hard and tough materials.

Ashby plot showing materials with the best combination of high hardness and fracture toughness. CREDIT: Alexander Kvashnin, Skoltech

By combining their toughness prediction model with two well-known models for material hardness, the scientists’ algorithm learned which regions of chemical space of compounds were most promising for tough, hard phases that could be easily synthesized.

Results were plotted on a “treasure map” of toughness vs. hardness, and the scientists were impressed by what they saw. All known hard materials were predicted with more than 90% accuracy. This proved the search’s predictive power, and the newly revealed combinations are potential treasures for industry.

Kvashnin explained he is part of an industrial project devoted to new materials for drilling bits, where experimentalists are now synthesizing one of these hard material treasures — tungsten pentaboride (WB5).

“This computational search is a potential way to optimize the search for new materials, much cheaper, faster and quite accurately,” said Kvashnin, who hopes that this new approach will enable the speedy development of new materials with enhanced properties.

But they aren’t stopping there with the theory. They want to use their modern methods and approaches to pin down the general rules for what makes hard and superhard materials among the elements to better guide researchers of the future.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Computational discovery of hard and superhard materials

Authors

Alexander G. Kvashnin, Zahed Allahyari and Artem R. Oganov

Author Affiliations

Skolkovo Institute of Science and Technology, Moscow Institute of Physics and Technology, Northwestern Polytechnical University


Journal of Applied Physics

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research.

http://jap.aip.org/

Share:
  • Harvesting Energy from the Human Knee
  • Cancer Lab on Chip to Enable Widespread Screening, Personalized Treatment

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏