AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Face Mask Construction, Materials Matter for Containing Coughing, Sneezing Droplets

  • June 30, 2020
  • Physics of Fluids
  • News
Share:

From the Journal: Physics of Fluids

WASHINGTON, June 30, 2020 — While the use of face masks in public has been widely recommended by public health officials during the current COVID-19 pandemic, there are relatively few specific guidelines pertaining to mask materials and designs. A study from Florida Atlantic University, in Physics of Fluids, from AIP Publishing, looks to better understand which types are best for controlling respiratory droplets that could contain viruses.

The smallest respiratory droplets leak through a face mask constructed using a folded handkerchief. Despite the leakage, the spread of the droplets is impeded considerably compared to no mask use. CREDIT: Siddhartha Verma, Manhar R. Dhanak and John Frankenfield
The smallest respiratory droplets leak through a face mask constructed using a folded handkerchief. Despite the leakage, the spread of the droplets is impeded considerably compared to no mask use. CREDIT: Siddhartha Verma, Manhar R. Dhanak and John Frankenfield

Siddhartha Verma and his team experimented with different choices in material and design to determine how well face masks block droplets as they exit the mouth. Using a laser to detect droplets as they were coughed and sneezed out of a mannequin head, the group was able to map out the paths of droplets and examine how different designs and materials alter that path.

The authors note the need for further quantitative analysis but were aware of the power of more straightforward visualization.

“While there are a few prior studies on the effectiveness of medical-grade equipment, we don’t have a lot of information about the cloth-based coverings that are most accessible to us at present,” said Verma. “Our hope is that the visualizations presented in the paper help convey the rationale behind the recommendations for social distancing and using face masks.”

The approach draws on a laser sheet setup that is a mainstay for those studying fluid mechanics, which Verma compares to seeing dust particles in a beam of sunlight.

“The main challenge is to represent a cough and sneeze faithfully,” he said. “The setup we have used a simplified cough, which, in reality, is complex and dynamic.”

LINK TO VIDEO: https://www.youtube.com/watch?v=_k7AUHPY2Pk

The group found that loosely folded face masks and bandanna-style coverings reduced the distance traveled by the droplet jets between 1/8 to 1/2 respectively of that for an uncovered cough. However, well-fitted homemade masks with multiple layers of quilting fabric and off-the-shelf cone style masks proved to be the most effective. Some leakage notwithstanding, these masks reduced the number of droplets significantly.

When without a mask, the mannequins were projecting droplets much farther than the oft-cited 6 feet in social distancing guidelines.

Verma said the group looks to continue studying the complex interplay that can involve droplet evaporation, ambient airflow and properties of the respiratory fluid ejected that lead to how droplets behave.

“It is also important to understand that face coverings are not a 100% effective in blocking respiratory pathogens,” he said. “This is why it is imperative that we use a combination of social distancing, face coverings, hand-washing and other recommendations from health care officials until an effective vaccine is released.”

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Visualizing the effectiveness of face masks in obstructing respiratory jets

Authors

Siddhartha Verma, Manhar R. Dhanak, John Frankenfield

Author Affiliations

Florida Atlantic University


Physics of Fluids

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids.

http://pof.aip.org

Share:
  • Spider Silk Can Create Lenses Useful for Biological Imaging
  • Countries Group into Clusters as COVID-19 Outbreak Spreads

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC