AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Enhancing lab-on-a-chip peristalsis with electro-osmosis

  • June 6, 2016
  • Physics of Fluids
  • News
Share:

Indian researchers have conducted analyses to electrically increase liquid flow in pump-free microfluidic devices

From the Journal: Physics of Fluids

WASHINGTON, D.C., May 10, 2016 – If you’ve ever eaten food while upside down – and who hasn’t indulged this chimpanzee daydream? – you can thank the successive wave-like motions of peristalsis for keeping the chewed bolus down and ferrying it into your stomach. In mechanical microdevices, this method of transport moves fluids without a separate pump– saving precious space in lab-on-a-chip and futuristic organ-on-a-chip devices – but this transport method is difficult to finely control.  

To remedy this, researchers at the Indian Institute of Technology’s Advanced Technology Development Center in Kharagpur, West Bengal have conducted lubrication theory-based analyses to explore the hydrodynamic effects of improving flow rate in pre-existing peristaltic hardware relying on an external electric field. Their research, which assesses the combined effects of electric fields and peristalsis on the channel flow rate, appears this week in Physics of Fluids, from AIP Publishing.

“Through our theoretical analysis, we’ve shown that by keeping the same peristalsis hardware, we may obtain an enhanced on-the-fly controllability of the flow rate by augmenting the device with electric fields,” said Suman Charkraborty, a professor in the institute’s Mechanical Engineering Department, and the Head of its School of Medical Science and Technology.

According to Chakraborty, an electric field component can easily be implemented because existing microtubule fabrication often involves sputtering electrodes onto the ends of the tubes – when a field is switched on, these electrodes cause fluid flow by attracting charged fluid toward the compatible electrode.

 A diagram of electric fields employed for modification of electrolytic flow through peristalsis. CREDIT - A. Bandopadhyay & S. Chakraborty /Univ. Rennes &I ndian Institute of Technology Kharagpur

This has the potential to aid researchers in studying targeted drug delivery, augmenting biophysical fluid transport in human bodies, and observing and controlling chemical reaction and mixing in surface-modulated fluid flow environments, Chakraborty said.

Future work for Chakraborty and his colleagues includes analyzing the motion of charged particles in the electroosmotically-modulated peristaltic environment – a tricky matter, due to the interactions between fluidic drag, fluid flow via the electric field, and electrophoretic particle motion. The researchers are also working to develop nanoscale energy harvesting, microfluidics-based portable kits for rapid medical diagnostics, and microfluidic tools to deepen our understanding of the physiological dynamics of living systems.

###

For More Information:

AIP Media Line

media@aip.org

301-209-3090

Article Title

Electroosmosis-modulated peristaltic transport in microfluidic channels

Authors

Aditya Bandopadhyay, Suman Chakraborty; Dharmendra Tripathi

Author Affiliations

Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India; Department of Mechanical Engineering, Manipal University, Jaipur, Rajasthan, India


Physics of Fluids

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids.

http://pof.aip.org

Share:
  • Introducing the Disposable Laser
  • Best of Both Worlds

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • CareersĀ 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC