AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Elegantly Modeling Earth’s Abrupt Glacial Transitions

  • March 7, 2023
  • Chaos
  • News
Share:

Simple and intuitive model illustrates how climate cycles are influenced by our planet’s orbit.

From the Journal: Chaos

The Laurentide Ice Sheet covered most of northern North America during glacial periods. Credit: NOAA Great Lakes Environmental Research Laboratory, jan.ucc.nau.edu/~rcb7/nam.html. Permission to re-use. https://www.flickr.com/photos/noaa_glerl/8740576431
The Laurentide Ice Sheet covered most of northern North America during glacial periods. Credit: NOAA Great Lakes Environmental Research Laboratory, jan.ucc.nau.edu/~rcb7/nam.html. Permission to re-use.
https://www.flickr.com/photos/noaa_glerl/8740576431

WASHINGTON, March 7, 2023 – Proxy data – indirect records of the Earth’s climate found in unlikely places like coral, pollen, trees, and sediments – show interesting oscillations approximately every 100,000 years starting about 1 million years ago. Strong changes in global ice volume, sea level, carbon dioxide concentration, and surface temperature indicate cycles of a long, slow transition to a glacial period and an abrupt switch to a warm and short interglacial period.

Milutin Milankovitch hypothesized that the timing of these cycles was controlled by the orbital parameters of the Earth, including the shape of its path around the sun and the tilt of the planet. A slightly closer orbit or more tilted planet could create a small increase in solar radiation and a feedback loop that leads to massive changes in climate. This idea suggests that there may be some predictability in the climate, a notoriously complex system.

In Chaos, by AIP Publishing, Stefano Pierini of Parthenope University of Naples proposed a new paradigm to simplify the verification of the Milankovitch hypothesis.

“The main motivation behind this study was the wish to characterize and illustrate the Milankovitch hypothesis in a simple, elegant, and intuitive way,” Pierini said.

Many models suggest that Milankovitch is correct; however, such methods are often detailed and study specific. They incorporate climate feedback loops – for example, increased ice cover reflects more radiation back into space, leading to further cooling and more ice cover – as threshold crossing rules. This means that an abrupt jump in climate only occurs once a parameter reaches a given tipping point.

Pierini’s “deterministic excitation paradigm” combines the physics concepts of relaxation oscillation and excitability to link Earth’s orbital parameters and the glacial cycles in a more generic way. The relaxation oscillation component describes how the climate slowly returns to its original glacier state after it is disturbed. At that point, the excitability piece of the model captures the external orbital changes and triggers the next glacial cycle.

By using his own threshold crossing rules and adopting a classical energy-balance model, Pierini obtained correct and robust timing of the most recent glacial cycles.

“The application of the deterministic excitation paradigm in the present basic formulation can explain the timing of the last four glacial terminations,” he said. “Extending the same analysis to the whole Pleistocene will be the subject of a future investigation.”

Pierini believes similar methods could be used in other fields of nonlinear science and in connection with other climate phenomena.

###

Article Title

The deterministic excitation paradigm and the late Pleistocene glacial terminations

Authors

Stefano Pierini

Author Affiliations

Parthenope University of Naples


Chaos

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.

http://chaos.aip.org

Share:
  • Your Gut’s Microbiome, On a Chip
  • Fighting Intolerance with Physics

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏