AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Determining Effective Magnetic Moment of Multicore Nanoparticles

  • June 16, 2020
  • Journal of Applied Physics
  • News
Share:

From the Journal: Journal of Applied Physics

WASHINGTON, June 16, 2020 — Magnetic nanoparticles, a class of nanoparticles that can be manipulated by magnetic fields, have a wide range of technical and biomedical applications, including magnetic hyperthermia, targeted drug delivery, new magnetic storage media and nanorobots. Most commercial nanoparticles do not possess a single magnetic core but have a number of small magnetic crystals called crystallites.

Schema of multicore magnetic nanoparticle comprising N randomly oriented magnetic crystallites (gray spheres) each having a magnetic moment m_s. For clarity, the magnetic moments of only a few crystallites are shown. The effective magnetic moment of the multicore nanoparticle is given by the vectorial sum of the nanocrystallite magnetic moments. CREDIT: Frank Ludwig
Schema of multicore magnetic nanoparticle comprising N randomly oriented magnetic crystallites (gray spheres) each having a magnetic moment m_s. For clarity, the magnetic moments of only a few crystallites are shown. The effective magnetic moment of the multicore nanoparticle is given by the vectorial sum of the nanocrystallite magnetic moments. CREDIT: Frank Ludwig

The important question for researchers is how these crystallites behave inside a multicore nanoparticle and how they respond to an applied magnetic field. A paper in the Journal of Applied Physics, from AIP Publishing, compares the effective magnetic moments of different multicore nanoparticle systems and shows that they are magnetic-field dependent.

“The effective magnetic moment of such a multicore nanoparticle depends on various parameters, such as the size of magnetic crystallites, their packing density, core configuration and the magnetic interaction between them,” said Frank Ludwig, one of the authors of the paper.

Many experimental findings indicate that the ensemble of crystallites behaves like a single magnetic core with some effective magnetic moment. Research has been directed toward determining how this effective magnetic moment is related to the number and size of crystallites inside one multicore nanoparticle because many applications require a large magnetic moment, which, e.g., determines the strength of the magnetic force needed for their manipulation.

The paper’s findings are important for researchers optimizing magnetic nanoparticles for various applications. Magnetic hyperthermia and magnetic drug targeting are two new frontiers in cancer therapy.

In magnetic hyperthermia, the nanoparticles are located at the tumor cells. A magnetic field with a frequency and amplitude that will heat the nanoparticles to a temperature of approximately 42-44 degrees Celsius is applied, which kills the tumor cells.

In magnetic drug targeting, the capsule with drugs and magnetic particles is directed to the tumor by magnetic field gradients. When they arrive at the tumor, the drugs are released from the capsule by various techniques. Targeted drug therapy can result in dramatic reduction of doses and side effects versus traditional chemotherapy.

Technical applications of nanoparticles range from new magnetic storage media to nanorobots. Storage media made of nanoparticles are much smaller than existing media and can store greater amounts of data. Nanorobots are machines that can build and manipulate things precisely at an atomic level and can be used in a wide variety of contexts such as miniscule sensors that monitor blood chemistry.

Ludwig said continuing to gain a better understanding of the effective magnetic moment of multicore nanoparticles and, especially, its field dependence is essential for both basic science and applications.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Magnetic field dependence of the effective magnetic moment of multi-core nanoparticles

Authors

Tamara Kahmann and Frank Ludwig

Author Affiliations

Technische Universität Braunschweig


Journal of Applied Physics

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research.

http://jap.aip.org/

Share:
  • Predicting Cancer Behavior Requires Better Understanding of Tumor Cells
  • Flushing Toilets Create Clouds of Virus-Containing Particles

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏