AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Designing an Acoustic Diode

  • November 1, 2013
  • Applied Physics Letters
  • News
Share:

Novel Design for a Device that Would Transmit Sound in One-way May Lead To Brighter, Clearer Ultrasound Images and Improve Diagnosis and Therapy

WASHINGTON, D.C. Nov. 1, 2013 — Most people know about ultrasound through its role in prenatal imaging: those grainy, grey outlines of junior constructed from reflected sound waves. A new technology called an “acoustic diode,” envisioned by researchers in China’s Nanjing University, may dramatically improve future ultrasound images by changing the way sound waves are transmitted.

Acoustic DiodeIn the journal Applied Physics Letters, which is produced by AIP Publishing, the scientists describe the theoretical framework for an acoustic diode — a device that achieves a one-way transmission of sound waves much the same as an electrical diode controls the one-way transmission of electrical impulses.

The one-way flow of sound would provide brighter and clearer ultrasound images by eliminating acoustic disturbances caused by sound waves going in two directions at the same time and interfering with each other, explained researcher Jian-chun Cheng.

“The propagation direction of the output wave would be controlled freely and precisely,” Cheng said. “These features are crucial for the medical ultrasound applications of the resulting devices.”

How the Acoustic Diode Would Work

Sound waves easily flow in two directions. Yet in nature, total reflection of sound in one direction is known to occur at the air-water interface. This gave investigators the idea that an acoustical diode could be constructed by transmitting acoustic waves using an asymmetric prism to create total unidirectional reflection.

The team developed its theoretical model based on a material not found in nature called a near-Zero Index Metamaterial (ZIM) and a prism to create high transmission efficacy acoustic waves that strike a reflective boundary from two opposite sides.

In theory, explained Dr. Cheng, “This would produce a unique tunneling effect and an unprecedented property that the output waveform is kept consistent with those of the waves traveling toward a boundary. “

###

For More Information:
Jason Socrates Bardi 
jbardi@aip.org
 
240-535-4954
 
@jasonbardi

Article Title

Unidirectional acoustic transmission through a prism with near-zero refractive index

Authors

Yong Li, Bin Liang, Zhong-ming Gu, Xin-ye Zou and Jian-chun Cheng

Author Affiliations

Nanjing University


Applied Physics Letters

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.
Share:
  • Seeing in the Dark
  • New Aluminum Alloy Stores Hydrogen

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏