AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Defining Plasma Dose for Potential Future Cancer Treatments

  • June 28, 2022
  • Physics of Plasmas
  • News
Share:

From the Journal: Physics of Plasmas

WASHINGTON, June 28, 2022 – Chinese researchers may have found a new approach to treat cancer by using a plasma treatment to induce apoptosis, the death of cancer cells, without any obvious side effect to normal cells.

The catch is that while a plasma-activated medium (PAM) can be treated as a drug, there is always a dose-effect relationship. And within the plasma community, many researchers are defining the plasma dose as either the plasma treatment time or the power deposited to plasma per surface.

Plasma-activated medium for cancer treatment. CREDIT: He Cheng, Jingyi Luo, Ke Song, Feng Zhao, Dawei Liu, Lanlan Nie, and Xinpei Lu
Plasma-activated medium for cancer treatment. CREDIT: He Cheng, Jingyi Luo, Ke Song, Feng Zhao, Dawei Liu, Lanlan Nie, and Xinpei Lu

In Physics of Plasmas, from AIP Publishing, the scientists’ definition of a plasma dose, the equivalent total oxidation potential (ETOP), can be used for PAM to reveal the plasma dose-response relationship for different cell types. ETOP is based on the oxidation potential of reactive oxygen and nitrogen species.

Plasma treatment time and the power deposited to plasma per surface “are not the right choices to define the plasma dose,” said Xinpei Lu, from Huazhong University of Science and Technology. “The essential part of the plasma treatment is the reactive species delivered to PAM. The definition of the plasma dose we present is based on this reactive species concentration.”

The goal of plasma medicine is to exploit a differentiated interaction of specific plasma components with specific elements or functionalities of living cells to control and, ideally, normalize therapeutic effects. One critical constraint on the path from the laboratory bench to bedside is the dose-response relationships of plasma on biological objects.

“Therefore, the determination of plasma dose is of critical biological importance for plasma’s clinical application,” said Lu. “For future plasma therapies, such as cancer treatment, our results suggest ETOP may be a well-defined strategy to evaluate its effects, because it provides the basis for significant lethality differences between normal and cancer cells.”

A plasma dose should be representative of the plasma’s contribution to the biological effect. In clinical pharmacology, this dose is most commonly measured by compounds in medicine for therapeutic purposes.

Although a broad spectrum of biological effects of plasma has been found and most distinctive plasma agents have been detected, two questions remain. How are these elements integrated into the plasma dose? How can we study the plasma dose-effect relationship?

ETOP is a preliminary attempt to answer these questions. Although it was already validated by a previous study done by the same team of researchers, whether ETOP is applicable for PAM was unclear. They note the applicability of ETOP or PAM, as well as corresponding plasma dose-response relationships, should be further studied.

“To our surprise, through data analysis, a good fit between experimental data and ETOP was found,” said Lu. “This suggests ETOP as a plasma dose is also suitable for PAM. We also found ETOP can be used to maximize the lethality difference between normal/cancer cells. Further validation by the published literature again indicates ETOP may provide a well-defined strategy to evaluate the selectivity of PAM treatment on different cell types.”

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

https://aip.scitation.org/doi/10.1063/5.0089357

Authors

He Cheng, Jingyi Luo, Ke Song, Feng Zhao, Dawei Liu, Lanlan Nie, and Xinpei Lu

Author Affiliations

Huazhong University of Science and Technology and Nanjing University of Science and Technology


Physics of Plasmas

Physics of Plasmas is devoted to the publication of original experimental and theoretical work in plasma physics, from basic plasma phenomena to astrophysical and dusty plasmas.

http://pop.aip.org

Share:
  • Update Noise Regulations to Protect Seals, Porpoises
  • Electrospinning Promises Major Improvements in Wearable Technology

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏