AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Cooling Mechanism Increases Solar Energy Harvesting for Self-Powered Outdoor Sensors

  • July 7, 2020
  • Applied Physics Letters
  • News
Share:

WASHINGTON, July 7, 2020 — Sensors placed in the environment spend long periods of time outdoors through all weather conditions, and they must continuously power themselves in order to collect data. Many, like photovoltaic cells, use the sun to produce electricity, but powering outdoor sensors at night is a challenge.

An illustration of thermoelectric devices using a wavelength-selective emitter and a broadband emitter. The device using a broadband emitter experiences a voltage drop due to environmental temperature changes, while the device with a selective emitter remains constant thanks to daytime radiative cooling. CREDIT: Satoshi Ishii
An illustration of thermoelectric devices using a wavelength-selective emitter and a broadband emitter. The device using a broadband emitter experiences a voltage drop due to environmental temperature changes, while the device with a selective emitter remains constant thanks to daytime radiative cooling. CREDIT: Satoshi Ishii

Thermoelectric devices, which use the temperature difference between the top and bottom of the device to generate power, offer some promise for harnessing naturally occurring energy. But, despite being more efficient than photovoltaics, many thermoelectric devices flip the sign of their voltage, meaning the electrical current changes the direction of its flow, when environmental temperatures change, so the voltage drops to zero at least twice a day.

“The sign of the thermoelectric device depends on the temperature difference between the top and bottom of the device,” author Satoshi Ishii said. “Cooling can be used to create a temperature difference compared to the ambient temperature, and if there is a temperature difference, thermoelectric generation is possible.”

In a study published this week in Applied Physics Letters, by AIP Publishing, the authors tested a thermoelectric device made up of a wavelength-selective emitter that constantly cools the device during the day using radiative cooling, the dispersion of thermal energy from the device into the air. As a result, the top of the device is cooler than the bottom, causing a temperature difference that creates constant voltage through day and night and various weather conditions.

The authors compared a broadband emitter with a selective emitter, showing the selective emitter avoids the problem of the voltage dropping to zero during environmental changes in temperature.

“For the selective emitter, it is best to have emissivity close to unity in the atmospheric window, approximately 8 to 13 micrometers, where the atmospheric transmittance is high and thermal emission can effectively radiate into space, which in turn cools the device,” Ishii said.

The device they tested is comprised of a 100-nanometer-thick aluminum film on the bottom of a glass substrate. The authors discovered that other sources of heat, such as the roof where a sensor might be mounted, can augment its ability to generate voltage.

“A large temperature difference results in a large thermoelectric voltage,” Ishii said. “Using the heat on the backside of the device makes the temperature difference between the bottom and top larger, so heat from behind the device is beneficial for thermoelectric generation.”

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Radiative cooling for continuous thermoelectric power generation in day and night

Authors

Ishii, Thang Duy Dao and Tadaaki Nagao

Author Affiliations

National Institute for Materials Science, University of Tsukuba, Japan Science and Technology Agency, Hokkaido University


Applied Physics Letters

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology.
Share:
  • Newer Solar Power Equipment Ages Better Than Older Units
  • Can Social Unrest, Riot Dynamics Be Modeled?

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏