AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Composing New Proteins with Artificial Intelligence

  • March 17, 2020
  • APL Bioengineering
  • News
Share:

From the Journal: APL Bioengineering

WASHINGTON, March 17, 2020 — Proteins are the building blocks of life, and consequently, scientists have long studied how they can improve proteins and design completely new proteins that perform new functions and processes.

Traditionally, new proteins are created by either mimicking existing proteins or manually editing the amino acids that make up the proteins. This process, however, is time-consuming, and it is difficult to predict the impact of changing any one of the amino acid components of a given protein.

Using musical scores to code the structure and folding of proteins composed of amino acids, each of which vibrates with a unique sound. CREDIT: Markus J. Buehler
Using musical scores to code the structure and folding of proteins composed of amino acids, each of which vibrates with a unique sound. CREDIT: Markus J. Buehler

In this week’s APL Bioengineering, from AIP Publishing, researchers in the United States and Taiwan explore how to create new proteins by using machine learning to translate protein structures into musical scores, presenting an unusual way to translate physics concepts across disparate domains.

Each of the 20 amino acids that make up proteins has a unique vibrational frequency. The chemical structure of entire proteins can consequently be mapped with audible representations, using known concepts from music theory like note volume, melody, chords and rhythm. The specific sounds generated, determined by the way a protein folds, can be used to train deep learning neural networks.

“These networks learn to understand the complex language folded proteins speak at multiple time scales,” said Markus J. Buehler, from the Massachusetts Institute of Technology. “And once the computer has been given a seed of a sequence, it can extrapolate and design entirely new proteins by improvising from this initial idea, while considering various levels of musical variations — controlled through a temperature parameter — during the generation.”

The team compared the new proteins against a large database with information about all known proteins and used molecular dynamics equilibration and characterization by using a normal mode analysis. Through these steps, the researchers demonstrated the method could design proteins that nature had not yet invented. The new proteins appear to be stable, folded designs, and scientists created an algorithm to materialize music from sound waves to matter.

“This paves the way for making entirely new biomaterials,” said Buehler. “Or perhaps you find an enzyme in nature and want to improve how it catalyzes or come up with new variations of proteins altogether.”

By adjusting the temperature, the number of variations the algorithm creates can be increased. The new mutations can be measured to see which are most effective as enzymes, for example.

The “protein music” the researchers uncovered could also help create new compositional techniques in classical music by illuminating the rhythms and tones of proteins, a method Buehler refers to as materiomusic.

“In the evolution of proteins over thousands of years, nature also gives us new ideas for how sounds be combined and merged,” said Buehler.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Sonification based de novo protein design using artificial intelligence, structure prediction and analysis using molecular modeling

Authors

Markus J. Buehler and Chi Hua Yu

Author Affiliations

Massachusetts Institute of Technology and National Cheng Kung University


APL Bioengineering

APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.

https://aip.scitation.org/journal/apb

Share:
  • Inverse Design Software Automates Design Process for Optical, Nanophotonic Structures
  • Recipe for Neuromorphic Processing Systems?

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC