AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Bionic Wing Flaps Improve Wind Energy Efficiency

  • March 22, 2022
  • Journal of Renewable and Sustainable Energy
  • News
Share:

From the Journal: Journal of Renewable and Sustainable Energy

Airflow patterns around a Gurney flap. CREDIT: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi
Airflow patterns around a Gurney flap. CREDIT: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi

WASHINGTON, March 22, 2022 — Wind energy relies on efficient wind turbine blades, which act as airfoils, structures akin to an airplane wing. Air flow control accessories similar to those found in aircraft improve the turbine blade’s aerodynamic performance.

In the Journal of Renewable and Sustainable Energy, by AIP Publishing, scientists from China show a bionic approach combining features of a seagull’s wing with an engineered flow control accessory, known as a Gurney flap, can greatly improve wind turbine performance.

A Gurney flap is a small tab projecting at right angles from the trailing edge of a wing. Its presence disturbs wind flow patterns and is especially effective at improving performance at low angles of attack. In aerodynamics, the angle of attack is the angle between a line through the center of an aircraft wing and the oncoming flow of air.

Although Gurney flaps improve performance of airfoils at low attack angles, they are not ideal for large angles of attack. Research has shown although Gurney flaps can significantly improve the performance of wind turbines in some situations, the turbine speed will be reduced.

Bionic flow control is a relatively new approach that imitates biological flight control systems — in other words, wings and feathers. The idea comes from the observation that during landing or in a gust of wind, the feathers on the top of a bird’s wings will pop out, creating a natural flap.

Hawk (left) and seagull (right); feathers lift up as the bird descends, creating a bionic flap in their wings. CREDIT: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi
Hawk (left) and seagull (right); feathers lift up as the bird descends, creating a bionic flap in their wings. CREDIT: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi

Computational and experimental studies show bionic feather-inspired flaps can increase lift and delay the onset of stalling at high angles of attack. Despite their advantages, adding bionic flaps can also reduce lift, particularly before a stall sets in. Therefore, the investigators tried an approach combining Gurney flaps with bionic features.

To achieve the best aerodynamic performance, the scientists simulated the use of the combined flow control accessory in a variety of situations, including high and low angle of attack and pre- and post-stall scenarios. They compared their computational simulations to experimental results for an aircraft wing undergoing a dynamic stall.

“The overall trend of the calculated lift curve is in good agreement with the experimental measurement results. Therefore, our simulation accuracy is considered acceptable, because the dynamic stall and its control are notoriously difficult to predict,” author Xiaomin Liu said.

The combined flow control accessory effectively improves the lift coefficient of the airfoil according to Liu. “For angles of attack in the range 16 to 24 degrees, the maximum lift coefficient of the airfoil is increased by 15% when a combination of Gurney flap and bionic flap is used.”

Combined flow control accessory effectively improves the lift coefficient of the airfoil in the pre-stall and post-stall region. CREDIT: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi
Combined flow control accessory effectively improves the lift coefficient of the airfoil in the pre-stall and post-stall region. CREDIT: Liming Wu, Xiaomin Liu, Yang Liu, and Guang Xi

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Using the combined flow control accessory to the aerodynamic performance enhancement of bio-inspired seagull airfoils


Journal of Renewable and Sustainable Energy

Journal of Renewable and Sustainable Energy is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy that apply to the physical science and engineering communities.

http://jrse.aip.org

Share:
  • Gravitational Wave Mirror Experiments Can Evolve Into Quantum Entities
  • Blowing Bubbles in Dough to Bake Perfect Yeast-Free Pizza

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • CareersĀ 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏