AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

3D-Printed Microstructure Forest Facilitates Solar Steam Generator Desalination

  • July 23, 2024
  • Applied Physics Reviews
  • News
Share:

Researchers create bioinspired 3D-printed solar steam generators for desalination, which can also be adapted for solar energy conversion or water purification.

From the Journal: Applied Physics Reviews

The fabrication and application of MJF-printed SSGs. (a) Synthesis process of the C@Fe3O4 ink for MJF printing. (b) Illustration of the MJF testbed setup and the structure of printed SSGs. (c) Schematic illustration of transpiration in plants and water transport in trunk and porous materials. (d) The illustrated evaporation process of water on the surface of MJF-printed SSG under solar irradiation.Credit: Yanbei Hou et al.
The fabrication and application of MJF-printed SSGs. (a) Synthesis process of the C@Fe3O4 ink for MJF printing. (b) Illustration of the MJF testbed setup and the structure of printed SSGs. (c) Schematic illustration of transpiration in plants and water transport in trunk and porous materials. (d) The illustrated evaporation process of water on the surface of MJF-printed SSG under solar irradiation.Credit: Yanbei Hou et al.

WASHINGTON, July 23, 2024 — Faced with the world’s impending freshwater scarcity, a team of researchers in Singapore turned to solar steam generators (SSGs), which are emerging as a promising device for seawater desalination. Desalination can be a costly, energy-intensive solution to water scarcity. This renewable-powered approach mimics the natural water cycle by using the sun’s energy to evaporate and isolate water. However, the technology is limited by the need to fabricate complex topologies to increase the surface area necessary to achieve high water evaporation efficiency.

To overcome this barrier, the team sought design inspiration from trees and harnessed the potential of 3D printing. In Applied Physics Reviews, the team presents a state-of-the-art technology for producing efficient SSGs for desalination and introduces a novel method for printing functional nanocomposites for multi-jet fusion (MJF).

“We created SSGs with exceptional photothermal performance and self-cleaning properties,” said Kun Zhou, a professor of mechanical engineering at Nanyang Technological University. “Using a treelike porous structure significantly enhances water evaporation rates and ensures continuous operation by preventing salt accumulation — its performance remains relatively stable even after prolonged testing.”

The physics behind their approach involves light-to-thermal energy conversion, where the SSGs absorb solar energy, convert it to heat, and evaporate the water/seawater. The SSG’s porous structure helps improve self-cleaning by removing accumulated salt to ensure sustained desalination performance.

“By using an effective photothermal fusing agent, MJF printing technology can rapidly create parts with intricate designs,” he said. “To improve the photothermal conversion efficiency of fusing agents and printed parts, we developed a novel type of fusing agent derived from metal-organic frameworks.”

Their SSGs were inspired by plant transpiration and are composed of miniature tree-shaped microstructures, forming an efficient, heat-distributing forest.

“Our bioinspired design increases the surface area of the SSG,” said Zhou. “Using a treelike design increases the surface area of the SSG, which enhances the water transport and boosts evaporation efficiency.”

One big surprise was the high rate of water evaporation observed in both simulated environments and field trials. The desalinated water consistently met standards for drinking water — even after a long-time test.

“This demonstrates the practicality and efficiency of our approach,” Zhou said. “And it can be quickly and easily mass-produced via MJF commercial printers.”

The team’s work shows significant potential for addressing freshwater scarcity.

“Our SSGs can be used in regions with limited access to freshwater to provide a sustainable and efficient desalination solution,” said Zhou. “Beyond desalination, it can be adapted for other applications that require efficient solar energy conversion and water purification.”

###

For more information:
Wendy Beatty
media@aip.org
301-209-3090

Article Title

3D printing of bio-inspired porous polymeric solar steam generators for efficient and sustainable desalination

Authors

Yanbei Hou, Ming Gao, Xueyu Bai, Lihua Zhao, Hejun Du, and Kun Zhou

Author Affiliations

Nanyang Technological University


Applied Physics Reviews

Applied Physics Reviews is the dedicated home for open access multidisciplinary research from and for the applied physics community. The journal publishes reviews of current research in applied physics.

https://aip.scitation.org/are

Share:
  • Microplastic Pollution Increases Sea Foam Height and Stability
  • Wearable Sensors Help Athletes Achieve Greater Performance

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏