AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Nanostructures Modeled on Moth Eyes Effective for Anti-Icing

  • August 4, 2020
  • AIP Advances
  • News
Share:

From the Journal: AIP Advances

WASHINGTON, August 4, 2020 — Researchers have been working for decades on improving the anti-icing performance of functional surfaces. Ice accumulation on aircraft wings, for instance, can reduce lifting force, block moving parts and cause disastrous problems.

Ice accumulation on a bare coated, nanostructure (NS) and nanostructure covered in paraffin (NSP) samples after a freezing test CREDIT: Nguyen Ba Duc
Ice accumulation on a bare coated, nanostructure (NS) and nanostructure covered in paraffin (NSP) samples after a freezing test CREDIT: Nguyen Ba Duc

Research in the journal AIP Advances, from AIP Publishing, investigates a unique nanostructure, modeled on moth eyes, that has anti-icing properties. Moth eyes are of interest because they have a distinct ice-phobic and transparent surface.

The researchers fabricated the moth eye nanostructure on a quartz substrate that was covered with a paraffin layer to isolate it from a cold and humid environment. Paraffin wax was chosen as a coating material due to its low thermal conductivity, easy coating and original water repellency.

“We evaluated the anti-icing properties of this unique nanostructure covered with paraffin in terms of adhesion strength, freezing time and mimicking rain sustainability,” said Nguyen Ba Duc, one of the authors.

Ice accumulation on energy transmission systems, vehicles and ships in a harsh environment often leads to massive destruction and contributes to serious accidents.

The researchers found the moth eyes nanostructure surface coated in paraffin exhibited greatly improved anti-icing performance, indicating the advantage of combining original water repellency and a unique heat-delaying structure. The paraffin interfered in the icing process in both water droplet and freezing rain experiments.

The number of air blocks trapped inside the nanostructure also contributed to delaying heat transfer, leading to an increase in freezing time of the attached water droplets.

“We also determined this unique nanostructure sample is suitable for optical applications, such as eyeglasses, as it has high transparency and anti-reflective properties,” said Ba Duc.

The high transparency and anti-reflective effects were due to the nanostructure being modeled on moth eyes, which have these transparent and anti-reflective properties.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Investigate structure for transparent anti-icing surfaces

Authors

Nguyen Ba Duc and Nguyen Thanh Bin

Author Affiliations

Tan Trao University and Thai Nguyen University of Education


AIP Advances

AIP Advances is a fully open access, online-only, peer-reviewed journal. It covers all areas of applied physical sciences. With its advanced web 2.0 functionality, the journal puts relevant content and discussion tools in the hands of the community to shape the direction of the physical sciences.

http://aipadvances.aip.org

Share:
  • The Problem with Microwaving Tea
  • Using Physics to Improve Root Canal Efficiency

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC