AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Cloth Masks Inferior for Protection Against Airborne Viral Spread

  • March 1, 2022
  • Physics of Fluids
  • News
Share:

From the Journal: Physics of Fluids

WASHINGTON, March 1, 2022 — Like many other viruses, COVID-19 is transmitted primarily via particles carried in the air. An infected person breathes out particles containing the virus into the air, which can then be inhaled by another person, who then becomes infected.

Masks are widely considered an important first-line defense against airborne transmission of the disease, as is supported by a preponderance of evidence. Fueled by the omicron variant, the latest wave of the pandemic prompted public health officials to recommend more protective face coverings because not all masks are created equal.

Fabric is a porous material with structure on multiple lengthscales. The top three images, from left to right, depict successively smaller lengthscales. At the largest lengthscale, fabric is a lattice woven from perpendicular yarns that go over and under other yarns at right angles to them. CREDIT: Richard P. Sear
Fabric is a porous material with structure on multiple lengthscales. The top three images, from left to right, depict successively smaller lengthscales. At the largest lengthscale, fabric is a lattice woven from perpendicular yarns that go over and under other yarns at right angles to them. CREDIT: Richard P. Sear

In Physics of Fluids, by AIP Publishing, researchers from England, Germany, and France focus their expertise — and their microscopes — on examining the efficacy of particle filtration by woven fabric, which, unlike material used in standard air filters and masks, consists of fibers twisted together into yarns. There are, therefore, two lengthscales: the diameters of the fiber and the yarn.

Using 3D imagery produced by confocal microscopy to see the air flow channels, the scientists simulate the airflow through these channels and calculate filtration efficiency for particles a micrometer and larger in diameter. The study concludes for particles in this size range, the filtration efficiency is low.

“Masks are air filters, and woven fabrics, such as cotton, make for good jeans, shirts, and other apparel, but they are lousy air filters,” said co-author Richard Sear, from the University of Surrey. “So, use woven fabric for clothing, and N95s or FFP2s or KF94s for masks.”

Indeed, the flow simulations suggest when a person breathes through cloth, most of the air flows through the gaps between the yarns in the woven fabric, bringing with it with more than 90% of the particles.

“In other words, these relatively large gaps are responsible for cloth being a bad material to make air filters from,” said Sear. “In contrast, the filtering layer of an N95 mask is made from much smaller, 5-micrometer fibers with gaps that are 10 times smaller, making it much better for filtering nasty particles from the air, such as those containing virus.”

While earlier research revealed similar findings, this study represents the first to simulate particles going directly through the gaps in woven fabric.

Sear added good masks should feature the “two Fs: good filtration and good fit.”

“Surgical masks fit badly, so a lot of air goes unfiltered past the edges of the mask by the cheeks and nose,” said Sear.

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Modeling the filtration efficiency of a woven fabric: The role of multiple lengthscales

Authors

Ioatzin Rios de Anda, Jake W. Wilkins, Joshua F. Robinson, C. Patrick Royall, and Richard P. Sear

Author Affiliations

University of Bristol; University of Surrey; Johannes Gutenberg-Universität Mainz; and ESPCI Paris, Université PSL


Physics of Fluids

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids.

http://pof.aip.org

Share:
  • Machine Learning Improves Human Speech Recognition
  • Physics Race Pits Usain Bolt Against Jurassic Park Dinosaur

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏