AIP Publishing LLC
AIP Publishing LLC
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books
  • Resources
    • Researchers
    • Librarians
    • Publishing Partners
    • Topical Portfolios
    • Commercial Partners
  • Publications

    Find the Right Journal

    Explore the AIP Publishing collection by title, topic, impact, citations, and more.
    Browse Journals

    Latest Content

    Read about the newest discoveries and developments in the physical sciences.
    See What's New

    Publications

    • Journals
    • Books
    • Physics Today
    • AIP Conference Proceedings
    • Scilight
    • Find the Right Journal
    • Latest Content
  • About
    • About Us
    • News and Announcements
    • Careers
    • Events
    • Leadership
    • Contact
  • pubs.aip.org
  • AIP
  • AIP China
  • University Science Books

Electrospinning Promises Major Improvements in Wearable Technology

  • June 28, 2022
  • APL Bioengineering
  • News
Share:

From the Journal: APL Bioengineering

WASHINGTON, June 28, 2022 – Wearable technology has exploded in recent years. Spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices, wearables encompass miniaturized electronic devices worn directly on the human skin for sensing a range of biophysical and biochemical signals or, as with smart watches, for providing convenient human-machine interfaces.

Electrospun nanofibers boast numerous advantages over conventional bulk materials for the development of wearables. CREDIT: Sameer Sonkusale
Electrospun nanofibers boast numerous advantages over conventional bulk materials for the development of wearables. CREDIT: Sameer Sonkusale

Engineering wearables for optimal skin conformity, breathability, and biocompatibility without compromising the tunability of their mechanical, electrical, and chemical properties is no small task. The emergence of electrospinning – the fabrication of nanofibers with tunable properties from a polymer base – is an exciting development in the field.

In APL Bioengineering, by AIP Publishing, researchers from Tufts University examined some of the latest advances in wearable electronic devices and systems being developed using electrospinning.

“We show how the scientific community has realized many remarkable things using electrospun nanomaterials,” said author Sameer Sonkusale. “They have applied them for physical activity monitoring, motion tracking, measuring biopotentials, chemical and biological sensing, and even batteries, transistors, and antennas, among others.”

Sonkusale and his colleagues showcase the many advantages electrospun materials have over conventional bulk materials.

Their high surface-to-volume ratio endows them with enhanced porosity and breathability, which is important for long-term wearability. Also, with the appropriate blend of polymers, they can achieve superior biocompatibility.

Conductive electrospun nanofibers provide high surface area electrodes, enabling both flexibility and performance improvements, including rapid charging and high energy storage capacities.

“Also, their nanoscale features mean they adhere well to the skin without need for chemical adhesives, which is important if you are interested in measuring biopotentials, like heart activity using electrocardiography or brain activity using electroencephalography,” said Sonkusale.

Electrospinning is considerably less expensive and more user-friendly than photolithography for realizing nanoscale transistor morphologies with superior electronic transport.

The researchers are confident electrospinning will further establish its claim as a versatile, feasible, and inexpensive technique for the fabrication of wearable devices in the coming years.

They note there are areas for improvement to be considered, including broadening the choice for materials and improving the ease of integration with human physiology.

They suggest the aesthetics of wearables may be improved by making them smaller and, perhaps, with the incorporation of transparent materials, “almost invisible.”

###

For more information:
Larry Frum
media@aip.org
301-209-3090

Article Title

Recent progress in electrospun nanomaterials for wearables

Authors

Riddha Das, Wenxin Zeng, Cihan Asci, Ruben Del-Rio-Ruiz, and Sameer Sonkusale

Author Affiliations

Tufts University


APL Bioengineering

APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities.

https://aip.scitation.org/journal/apb

Share:
  • Defining Plasma Dose for Potential Future Cancer Treatments
  • Microfluidic-Based Soft Robotic Prosthetics Promise Relief for Diabetic Amputees

Keep Up With AIP Publishing

Sign up for the AIP newsletter to receive the latest news and information from AIP Publishing.
Sign Up

AIP PUBLISHING

1305 Walt Whitman Road,
Suite 110
Melville, NY 11747
(516) 576-2200

Resources

  • Researchers
  • Librarians
  • Publishing Partners
  • Commercial Partners

About

  • About Us
  • Careers 
  • Leadership

Support

  • Contact Us
  • Terms Of Use
  • Privacy Policy

© 2025 AIP Publishing LLC
  • 𝕏